Advancing knee adduction moment prediction for neuromuscular training via functional joint definitions and real-time simulation using OpenSim.

Neuromuscular training to strengthen leg muscles is an important part of the treatment of musculoskeletal disorders and chronic diseases and preventing age-related muscle loss. This study evaluates different individualization approaches and their real-time implementation for OpenSim musculoskeletal...

Full description

Saved in:
Bibliographic Details
Main Authors: Fabian Goell, Bjoern Braunstein, Maike Stemmler, Alessandro Fasse, Dirk Abel, Kirsten Albracht
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2025-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0324985
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuromuscular training to strengthen leg muscles is an important part of the treatment of musculoskeletal disorders and chronic diseases and preventing age-related muscle loss. This study evaluates different individualization approaches and their real-time implementation for OpenSim musculoskeletal models to estimate the external knee adduction moment during a leg-press exercise. A robotic neuromuscular training platform was utilized to perform isometric and dynamic leg extension exercises. Data were collected for 13 subjects using a 3D motion capture system and force plate measurements from the robotic training platform. Functional joint parameters, determined through dynamic reference movements, were integrated into the OpenSim models, allowing a personalized representation of the hip, knee, and ankle joints. This integration was compared with a conventional scaling method. The results indicate that the incorporation of functional joint axes can significantly enhance the accuracy of biomechanical simulations. These methods provide a real-time and a more precise estimate of the external knee adduction moment compared to conventional scaling approaches and underscore the importance of individualized model parameters in biomechanical research.
ISSN:1932-6203