Soil Structure Analysis with Attention: A Deep-Learning-Based Method for 3D Pore Segmentation and Characterization

The pore structure plays a crucial role in soil systems. It affects a range of processes essential for soil ecological functions, such as the transport and retention of water and nutrients, as well as gas exchanges. The mechanical and hydrological characteristics of soil are predominantly determined...

Full description

Saved in:
Bibliographic Details
Main Authors: Italo Francyles Santos da Silva, Alan de Carvalho Araújo, João Dallyson Sousa de Almeida, Anselmo Cardoso de Paiva, Aristófanes Corrêa Silva, Deane Roehl
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:AgriEngineering
Subjects:
Online Access:https://www.mdpi.com/2624-7402/7/2/27
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The pore structure plays a crucial role in soil systems. It affects a range of processes essential for soil ecological functions, such as the transport and retention of water and nutrients, as well as gas exchanges. The mechanical and hydrological characteristics of soil are predominantly determined by the three-dimensional pore pore-space structure. A precise analysis of pore structure can help specialists understand how these shapes impact plant root activity, leading to better cultivation practices. X-ray computed tomography provides detailed information without destroying the sample. However, manually delineating pore structure and estimating porosity are challenging tasks. This work proposes an automated method for 3D pore segmentation and characterization using convolutional neural networks with attention mechanisms. The method introduces a novel approach that combines attention at both channel and spatial levels, enhancing the segmentation and property estimation, providing valuable insights for a more detailed study of soil conditions. In experiments conducted with a private dataset, the segmentation results achieved mean Dice values of 99.10% ± 0.0004 and mean IoU values of 98.23% ± 0.0008. Additionally, in tests with Phaeozem Albic, the automatic method provided porosity estimates comparable to those obtained by a method based on integral geometry and morphology.
ISSN:2624-7402