Two-Dimensional MXenes: Innovative Materials for Efficient Thermal Management and Safety Solutions

MXenes, a class of 2-dimensional transition metal carbides and nitrides, have garnered important attention due to their remarkable electrical and thermal conductivity, high photothermal conversion efficiency, and multifunctionality. This review explores the potential of MXene materials in various th...

Full description

Saved in:
Bibliographic Details
Main Authors: XiaoYan Hu, Qi Fan, Shengchao Wang, Yanxin Chen, Degao Wang, Ke Chen, Fangfang Ge, Wenhu Zhou, Kun Liang
Format: Article
Language:English
Published: American Association for the Advancement of Science (AAAS) 2024-01-01
Series:Research
Online Access:https://spj.science.org/doi/10.34133/research.0542
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:MXenes, a class of 2-dimensional transition metal carbides and nitrides, have garnered important attention due to their remarkable electrical and thermal conductivity, high photothermal conversion efficiency, and multifunctionality. This review explores the potential of MXene materials in various thermal applications, including thermal energy storage, heat dissipation in electronic devices, and the mitigation of electromagnetic interference in wearable technologies. Recent advancements in MXene composites, such as MXene/bacterial cellulose aerogel films and MXene/polymer composites, have demonstrated enhanced performance in phase change thermal storage and electromagnetic interference shielding, underscoring their versatility and effectiveness. Although notable progress has been made, challenges remain, including the need for a deeper understanding of photothermal conversion mechanisms, improvements in mechanical properties, exploration of diverse MXene types, and the development of sustainable synthesis methods. This paper discusses these aspects and outlines future research directions, emphasizing the growing importance of MXenes in addressing energy efficiency, health, and safety concerns in modern applications.
ISSN:2639-5274