Linking fast and slow: The case for generative models

Saved in:
Bibliographic Details
Main Authors: Johan Medrano, Karl Friston, Peter Zeidman
Format: Article
Language:English
Published: The MIT Press 2024-02-01
Series:Harvard Data Science Review
Online Access:http://dx.doi.org/10.1162/netn_a_00343
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850258438886522880
author Johan Medrano
Karl Friston
Peter Zeidman
author_facet Johan Medrano
Karl Friston
Peter Zeidman
author_sort Johan Medrano
collection DOAJ
format Article
id doaj-art-73eb50e97ea04523ab752417a8729a5c
institution OA Journals
issn 2644-2353
language English
publishDate 2024-02-01
publisher The MIT Press
record_format Article
series Harvard Data Science Review
spelling doaj-art-73eb50e97ea04523ab752417a8729a5c2025-08-20T01:56:10ZengThe MIT PressHarvard Data Science Review2644-23532024-02-018110.1162/netn_a_00343Linking fast and slow: The case for generative modelsJohan MedranoKarl FristonPeter Zeidmanhttp://dx.doi.org/10.1162/netn_a_00343
spellingShingle Johan Medrano
Karl Friston
Peter Zeidman
Linking fast and slow: The case for generative models
Harvard Data Science Review
title Linking fast and slow: The case for generative models
title_full Linking fast and slow: The case for generative models
title_fullStr Linking fast and slow: The case for generative models
title_full_unstemmed Linking fast and slow: The case for generative models
title_short Linking fast and slow: The case for generative models
title_sort linking fast and slow the case for generative models
url http://dx.doi.org/10.1162/netn_a_00343
work_keys_str_mv AT johanmedrano linkingfastandslowthecaseforgenerativemodels
AT karlfriston linkingfastandslowthecaseforgenerativemodels
AT peterzeidman linkingfastandslowthecaseforgenerativemodels