基于组合神经网络模型的快堆堆芯瞬态热工水力参数预测方法研究
对于反应堆热工水力参数的预测,现有的研究多使用单一神经网络的预测方法,但在噪声较大的情况下,单一神经网络不能很好地剔除噪声的影响。本文使用基于经验模态分解法(Empirical Mode Decomposition,EMD)与奇异谱分析法(Singular Spectrum Analysis,SSA)结合自适应径向基神经网络(Radial Basis Function Neural Network,RBF)的组合模型提高堆芯热工参数瞬态预测的精度。采用1/2中国实验快堆(China Experimental Fast Reactor,CEFR)为研究对象,使用快堆子通道程序SUBCHANFLO...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | zho |
| Published: |
Science Press
2025-05-01
|
| Series: | He jishu |
| Subjects: | |
| Online Access: | https://www.sciengine.com/doi/10.11889/j.0253-3219.2025.hjs.48.230421 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|