Integrated Machine Learning Framework Combining Electrical Cycling and Material Features for Supercapacitor Health Forecasting

The ability to predict capacity retention is critical for ensuring the long-term reliability of supercapacitors in energy storage systems. This study presents a comprehensive machine learning framework that integrates both electrical cycling data and experimentally derived material and structural fe...

Full description

Saved in:
Bibliographic Details
Main Authors: Mojtaba Khakpour Komarsofla, Kavian Khosravinia, Amirkianoosh Kiani
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Batteries
Subjects:
Online Access:https://www.mdpi.com/2313-0105/11/7/264
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ability to predict capacity retention is critical for ensuring the long-term reliability of supercapacitors in energy storage systems. This study presents a comprehensive machine learning framework that integrates both electrical cycling data and experimentally derived material and structural features to forecast the degradation behavior of commercial supercapacitors. A total of seven supercapacitor samples were tested under various current and voltage conditions, resulting in over 70,000 charge–discharge cycles across three case studies. In addition to electrical measurements, detailed physical and material characterizations were performed, including electrode dimension analysis, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Thermogravimetric Analysis (TGA). Three machine learning models, Linear Regression (LR), Random Forest (RF), and Multi-Layer Perceptron (MLP), were trained using both cycler-only and combined cycler + material features. Results show that incorporating material features consistently improved prediction accuracy across all models. The MLP model exhibited the highest performance, achieving an R<sup>2</sup> of 0.976 on the training set and 0.941 on unseen data. Feature importance analysis confirmed that material descriptors such as porosity, thermal stability, and electrode thickness significantly contributed to model performance. This study demonstrates that combining electrical and material data offers a more holistic and physically informed approach to supercapacitor health prediction. The framework developed here provides a practical foundation for accurate and robust lifetime forecasting of commercial energy storage devices, highlighting the critical role of material-level insights in enhancing model generalization and reliability.
ISSN:2313-0105