A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis

Abstract The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 trun...

Full description

Saved in:
Bibliographic Details
Main Authors: Julien Marcoux, P Patrizia Mangione, Riccardo Porcari, Matteo T Degiacomi, Guglielmo Verona, Graham W Taylor, Sofia Giorgetti, Sara Raimondi, Sarah Sanglier‐Cianférani, Justin LP Benesch, Ciro Cecconi, Mohsin M Naqvi, Julian D Gillmore, Philip N Hawkins, Monica Stoppini, Carol V Robinson, Mark B Pepys, Vittorio Bellotti
Format: Article
Language:English
Published: Springer Nature 2015-08-01
Series:EMBO Molecular Medicine
Subjects:
Online Access:https://doi.org/10.15252/emmm.201505357
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850204422428164096
author Julien Marcoux
P Patrizia Mangione
Riccardo Porcari
Matteo T Degiacomi
Guglielmo Verona
Graham W Taylor
Sofia Giorgetti
Sara Raimondi
Sarah Sanglier‐Cianférani
Justin LP Benesch
Ciro Cecconi
Mohsin M Naqvi
Julian D Gillmore
Philip N Hawkins
Monica Stoppini
Carol V Robinson
Mark B Pepys
Vittorio Bellotti
author_facet Julien Marcoux
P Patrizia Mangione
Riccardo Porcari
Matteo T Degiacomi
Guglielmo Verona
Graham W Taylor
Sofia Giorgetti
Sara Raimondi
Sarah Sanglier‐Cianférani
Justin LP Benesch
Ciro Cecconi
Mohsin M Naqvi
Julian D Gillmore
Philip N Hawkins
Monica Stoppini
Carol V Robinson
Mark B Pepys
Vittorio Bellotti
author_sort Julien Marcoux
collection DOAJ
description Abstract The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non‐amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano‐enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis‐mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.
format Article
id doaj-art-73bd04162dae41c1a8592516fd43e2e6
institution OA Journals
issn 1757-4676
1757-4684
language English
publishDate 2015-08-01
publisher Springer Nature
record_format Article
series EMBO Molecular Medicine
spelling doaj-art-73bd04162dae41c1a8592516fd43e2e62025-08-20T02:11:17ZengSpringer NatureEMBO Molecular Medicine1757-46761757-46842015-08-017101337134910.15252/emmm.201505357A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesisJulien Marcoux0P Patrizia Mangione1Riccardo Porcari2Matteo T Degiacomi3Guglielmo Verona4Graham W Taylor5Sofia Giorgetti6Sara Raimondi7Sarah Sanglier‐Cianférani8Justin LP Benesch9Ciro Cecconi10Mohsin M Naqvi11Julian D Gillmore12Philip N Hawkins13Monica Stoppini14Carol V Robinson15Mark B Pepys16Vittorio Bellotti17Department of Chemistry, University of OxfordWolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College LondonWolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College LondonDepartment of Chemistry, University of OxfordWolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College LondonWolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College LondonDepartment of Molecular Medicine, Institute of Biochemistry, University of PaviaDepartment of Molecular Medicine, Institute of Biochemistry, University of PaviaLaboratoire de Spectrométrie de Masse BioOrganique (LSMBO), University of Strasbourg UDSDepartment of Chemistry, University of OxfordInstitute of Nanoscience S3, Consiglio Nazionale delle RicercheDepartment of Physics, Informatics and Mathematics, University of Modena and Reggio EmiliaWolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College LondonWolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College LondonDepartment of Molecular Medicine, Institute of Biochemistry, University of PaviaDepartment of Chemistry, University of OxfordWolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College LondonWolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College LondonAbstract The mechanisms underlying transthyretin‐related amyloidosis in vivo remain unclear. The abundance of the 49–127 transthyretin fragment in ex vivo deposits suggests that a proteolytic cleavage has a crucial role in destabilizing the tetramer and releasing the highly amyloidogenic 49–127 truncated protomer. Here, we investigate the mechanism of cleavage and release of the 49–127 fragment from the prototypic S52P variant, and we show that the proteolysis/fibrillogenesis pathway is common to several amyloidogenic variants of transthyretin and requires the action of biomechanical forces provided by the shear stress of physiological fluid flow. Crucially, the non‐amyloidogenic and protective T119M variant is neither cleaved nor generates fibrils under these conditions. We propose that a mechano‐enzymatic mechanism mediates transthyretin amyloid fibrillogenesis in vivo. This may be particularly important in the heart where shear stress is greatest; indeed, the 49–127 transthyretin fragment is particularly abundant in cardiac amyloid. Finally, we show that existing transthyretin stabilizers, including tafamidis, inhibit proteolysis‐mediated transthyretin fibrillogenesis with different efficiency in different variants; however, inhibition is complete only when both binding sites are occupied.https://doi.org/10.15252/emmm.201505357amyloidmechano‐enzymatic cleavagetransthyretin
spellingShingle Julien Marcoux
P Patrizia Mangione
Riccardo Porcari
Matteo T Degiacomi
Guglielmo Verona
Graham W Taylor
Sofia Giorgetti
Sara Raimondi
Sarah Sanglier‐Cianférani
Justin LP Benesch
Ciro Cecconi
Mohsin M Naqvi
Julian D Gillmore
Philip N Hawkins
Monica Stoppini
Carol V Robinson
Mark B Pepys
Vittorio Bellotti
A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis
EMBO Molecular Medicine
amyloid
mechano‐enzymatic cleavage
transthyretin
title A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis
title_full A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis
title_fullStr A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis
title_full_unstemmed A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis
title_short A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis
title_sort novel mechano enzymatic cleavage mechanism underlies transthyretin amyloidogenesis
topic amyloid
mechano‐enzymatic cleavage
transthyretin
url https://doi.org/10.15252/emmm.201505357
work_keys_str_mv AT julienmarcoux anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT ppatriziamangione anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT riccardoporcari anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT matteotdegiacomi anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT guglielmoverona anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT grahamwtaylor anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT sofiagiorgetti anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT sararaimondi anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT sarahsangliercianferani anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT justinlpbenesch anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT cirocecconi anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT mohsinmnaqvi anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT juliandgillmore anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT philipnhawkins anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT monicastoppini anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT carolvrobinson anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT markbpepys anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT vittoriobellotti anovelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT julienmarcoux novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT ppatriziamangione novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT riccardoporcari novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT matteotdegiacomi novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT guglielmoverona novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT grahamwtaylor novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT sofiagiorgetti novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT sararaimondi novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT sarahsangliercianferani novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT justinlpbenesch novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT cirocecconi novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT mohsinmnaqvi novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT juliandgillmore novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT philipnhawkins novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT monicastoppini novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT carolvrobinson novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT markbpepys novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis
AT vittoriobellotti novelmechanoenzymaticcleavagemechanismunderliestransthyretinamyloidogenesis