Unconventional Fossil Energy Carrier Assessment of the Influence of the Gas Permeability Coefficient on the Structure of Porous Materials: A Review

The issue of gas permeability of porous beds is important for the development of a new generation of clean energy sources, especially in the context of unconventional energy storage. Detailed experimental studies were carried out to demonstrate the gas permeability of porous materials: in situ karbo...

Full description

Saved in:
Bibliographic Details
Main Authors: Jakub T. Hołaj-Krzak, Barbara Dybek, Jan Szymenderski, Adam Koniuszy, Grzegorz Wałowski
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/4/870
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The issue of gas permeability of porous beds is important for the development of a new generation of clean energy sources, especially in the context of unconventional energy storage. Detailed experimental studies were carried out to demonstrate the gas permeability of porous materials: in situ karbonizat and natural and synthetic pumice. The measure of gas permeability was the volumetric gas flow velocity resulting from the permissible pressure difference forcing the gas flow in a given axis (X, Y, Z) on a sample of a cube-shaped porous material. A novelty is the indication of correlation with selected materials exhibiting features of unconventional energy storage. Assessment of the gas permeability coefficient for selected material features shows an increasing trend for epoxy resin, dacite, in situ carbonizate and pumice. On the other hand, for carbonate rocks, mudstones and shales, there is a decrease in gas permeability. The indicated porous materials can be storage tanks of unconventional energy carriers. In an innovative way, a material (halloysite) was indicated that has the ability to store and be a source of transport in the form of a cylindrical model (nanotube) for future implementation of isotropic features of porous materials.
ISSN:1996-1073