The Design of a Turning Tool Based on a Self-Sensing Giant Magnetostrictive Actuator
Smart tools are limited by actuation–sensing integration and structural redundancy, making it difficult to achieve compactness, ultra-precision feed, and immediate feedback. This paper proposes a self-sensing giant magnetostrictive actuator-based turning tool (SSGMT), which enables simultaneous actu...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Actuators |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-0825/14/6/302 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Smart tools are limited by actuation–sensing integration and structural redundancy, making it difficult to achieve compactness, ultra-precision feed, and immediate feedback. This paper proposes a self-sensing giant magnetostrictive actuator-based turning tool (SSGMT), which enables simultaneous actuation and output sensing without external sensors. A multi-objective optimization model is first established to determine the key design parameters of the SSGMT to improve magnetic transfer efficiency, system compactness, and sensing signal quality. Then, a dynamic hysteresis model with a Hammerstein structure is developed to capture its nonlinear characteristics. To ensure accurate positioning and a robust response, a hybrid control strategy combining feedforward compensation and adaptive feedback is implemented. The SSGMT is experimentally validated through a series of tests including self-sensing displacement accuracy and trajectory tracking under various frequencies and temperatures. The prototype achieves nanometer-level resolution, stable output, and precise tracking across different operating conditions. These results confirm the feasibility and effectiveness of integrating actuation and sensing in one structure, providing a promising solution for the application of smart turning tools. |
|---|---|
| ISSN: | 2076-0825 |