A Novel Representation of the Exact Solution for Differential Algebraic Equations System Using Residual Power-Series Method
We implement a relatively new analytic iterative technique to get approximate solutions of differential algebraic equations system based on generalized Taylor series formula. The solution methodology is based on generating the residual power series expansion solution in the form of a rapidly converg...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2015-01-01
|
Series: | Discrete Dynamics in Nature and Society |
Online Access: | http://dx.doi.org/10.1155/2015/205207 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832553201123983360 |
---|---|
author | Khaled Moaddy Mohammed AL-Smadi Ishak Hashim |
author_facet | Khaled Moaddy Mohammed AL-Smadi Ishak Hashim |
author_sort | Khaled Moaddy |
collection | DOAJ |
description | We implement a relatively new analytic iterative technique to get approximate solutions of differential algebraic equations system based on generalized Taylor series formula. The solution methodology is based on generating the residual power series expansion solution in the form of a rapidly convergent series with easily computable components. The residual power series method (RPSM) can be used as an alternative scheme to obtain analytical approximate solution of different types of differential algebraic equations system applied in mathematics. Simulations and test problems were analyzed to demonstrate the procedure and confirm the performance of the proposed method, as well as to show its potentiality, generality, viability, and simplicity. The results reveal that the proposed method is very effective, straightforward, and convenient for solving different forms of such systems. |
format | Article |
id | doaj-art-7391894544db4635ba8fd8e278b2e287 |
institution | Kabale University |
issn | 1026-0226 1607-887X |
language | English |
publishDate | 2015-01-01 |
publisher | Wiley |
record_format | Article |
series | Discrete Dynamics in Nature and Society |
spelling | doaj-art-7391894544db4635ba8fd8e278b2e2872025-02-03T05:54:41ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2015-01-01201510.1155/2015/205207205207A Novel Representation of the Exact Solution for Differential Algebraic Equations System Using Residual Power-Series MethodKhaled Moaddy0Mohammed AL-Smadi1Ishak Hashim2Department of Mathematics, Faculty of Science and Arts, Shaqra University, Shaqra 11691, Saudi ArabiaApplied Science Department, Ajloun College, Al-Balqa Applied University, Ajloun 26816, JordanSchool of Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, MalaysiaWe implement a relatively new analytic iterative technique to get approximate solutions of differential algebraic equations system based on generalized Taylor series formula. The solution methodology is based on generating the residual power series expansion solution in the form of a rapidly convergent series with easily computable components. The residual power series method (RPSM) can be used as an alternative scheme to obtain analytical approximate solution of different types of differential algebraic equations system applied in mathematics. Simulations and test problems were analyzed to demonstrate the procedure and confirm the performance of the proposed method, as well as to show its potentiality, generality, viability, and simplicity. The results reveal that the proposed method is very effective, straightforward, and convenient for solving different forms of such systems.http://dx.doi.org/10.1155/2015/205207 |
spellingShingle | Khaled Moaddy Mohammed AL-Smadi Ishak Hashim A Novel Representation of the Exact Solution for Differential Algebraic Equations System Using Residual Power-Series Method Discrete Dynamics in Nature and Society |
title | A Novel Representation of the Exact Solution for Differential Algebraic Equations System Using Residual Power-Series Method |
title_full | A Novel Representation of the Exact Solution for Differential Algebraic Equations System Using Residual Power-Series Method |
title_fullStr | A Novel Representation of the Exact Solution for Differential Algebraic Equations System Using Residual Power-Series Method |
title_full_unstemmed | A Novel Representation of the Exact Solution for Differential Algebraic Equations System Using Residual Power-Series Method |
title_short | A Novel Representation of the Exact Solution for Differential Algebraic Equations System Using Residual Power-Series Method |
title_sort | novel representation of the exact solution for differential algebraic equations system using residual power series method |
url | http://dx.doi.org/10.1155/2015/205207 |
work_keys_str_mv | AT khaledmoaddy anovelrepresentationoftheexactsolutionfordifferentialalgebraicequationssystemusingresidualpowerseriesmethod AT mohammedalsmadi anovelrepresentationoftheexactsolutionfordifferentialalgebraicequationssystemusingresidualpowerseriesmethod AT ishakhashim anovelrepresentationoftheexactsolutionfordifferentialalgebraicequationssystemusingresidualpowerseriesmethod AT khaledmoaddy novelrepresentationoftheexactsolutionfordifferentialalgebraicequationssystemusingresidualpowerseriesmethod AT mohammedalsmadi novelrepresentationoftheexactsolutionfordifferentialalgebraicequationssystemusingresidualpowerseriesmethod AT ishakhashim novelrepresentationoftheexactsolutionfordifferentialalgebraicequationssystemusingresidualpowerseriesmethod |