Scaling Relationships Among the Floral Organs of <i>Rosa chinensis</i> var. <i>minima</i>: Implications for Reproductive Allocation and Floral Proportionalities

Although the allocation of biomass among floral organs reflects critical trade-offs in plant reproductive strategies, the scaling relationships governing biomass allocations remain poorly resolved, particularly in flowers. Here, we report the fresh mass scaling allocation patterns among four floral...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhe Wen, Karl J. Niklas, Yunfeng Yang, Wen Gu, Zhongqin Li, Peijian Shi
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/14/15/2446
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although the allocation of biomass among floral organs reflects critical trade-offs in plant reproductive strategies, the scaling relationships governing biomass allocations remain poorly resolved, particularly in flowers. Here, we report the fresh mass scaling allocation patterns among four floral organs (i.e., sepals, petals, stamens, and carpels), and the two subtending structural components (i.e., the pedicel and receptacle) of 497 flowers of the hypogynous <i>Rosa chinensis</i> var. <i>minima</i> (miniature rose) using reduced major axis protocols. The two-parameter Weibull probability density function was also applied to characterize the distributions of floral organ mass, and revealed skewed tendencies in all six measured traits. The results show that the numerical values of the scaling exponents (α) for all pairwise power-law relationships significantly exceeded unity (α > 1), indicating disproportionate investments in larger floral structures with increasing overall flower size. Specifically, the scaling exponent of corolla fresh mass vs. calyx fresh mass was α = 1.131 (95% confidence interval [CI]: 1.086, 1.175), indicating that petal investment outpaces sepal investment as flower size increases. Reproductive organs also exhibited significant disproportionate investments (i.e., allometry): the collective carpel (gynoecium) fresh mass scaled allometrically with respect to the collective stamen (androecium) mass (α = 1.062, CI: 1.028, 1.098). Subtending axial structures (pedicel and receptacle) also had hyperallometric patterns, with pedicel mass scaling at α = 1.167 (CI: 1.106, 1.235) with respect to receptacle mass. Likewise, the combined fresh mass of all four foliar homologues (sepals, petals, androecium, and gynoecium) scaled disproportionately with respect to the biomass of the two subtending axial structures (α = 1.169, CI: 1.126, 1.214), indicating a prioritized resource allocation to reproductive and display organs. These findings are in accord with hypotheses positing that floral display traits, such as corolla size, primarily enhance pollen export by attracting pollinators, while maintaining fruit setting success through coordinated investment in gynoecium development. The consistent hyperallometry across all organ pairwise comparisons underscores the role of developmental integration in shaping floral architecture in Rosaceae, as predicted by scaling theory. By integrating morphometric and scaling analyses, this study proposes a tractable methodology for investigating floral resource allocation in monomorphic-flowering species and provides empirical evidence consistent with the adaptive patterns of floral traits within this ecologically and horticulturally significant lineage.
ISSN:2223-7747