Enhancing wind turbine blade damage detection with YOLO-Wind

Abstract This study presents an enhanced YOLOv8n framework for wind turbine surface damage detection, achieving 83.9% mAP@0.5 on the DTU dataset—a 2.3% improvement over baseline models. The architecture replaces standard convolutions with depthwise separable convolutions (DWConv) to optimize computa...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhao Zhanfang, Li Tuo
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-03639-8
Tags: Add Tag
No Tags, Be the first to tag this record!