An anaerobic in vitro flow model for studying interactions at the gastrointestinal host–microbe interface

Abstract In vitro research on host–microbe interactions in the human gut has been challenging due to the differing oxygen requirements of mammalian cells and intestinal microbiota. Few models of this environment have been developed, and those available are complex, limiting the extraction of importa...

Full description

Saved in:
Bibliographic Details
Main Authors: L. L. Bang, J. S. Pettersen, N. Høiland, A. M. Rojek, D. R. Tornby, J. Møller-Jensen, U. S. Justesen, R. M. Pedersen, T. E. Andersen
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:npj Biofilms and Microbiomes
Online Access:https://doi.org/10.1038/s41522-025-00800-z
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849237780716060672
author L. L. Bang
J. S. Pettersen
N. Høiland
A. M. Rojek
D. R. Tornby
J. Møller-Jensen
U. S. Justesen
R. M. Pedersen
T. E. Andersen
author_facet L. L. Bang
J. S. Pettersen
N. Høiland
A. M. Rojek
D. R. Tornby
J. Møller-Jensen
U. S. Justesen
R. M. Pedersen
T. E. Andersen
author_sort L. L. Bang
collection DOAJ
description Abstract In vitro research on host–microbe interactions in the human gut has been challenging due to the differing oxygen requirements of mammalian cells and intestinal microbiota. Few models of this environment have been developed, and those available are complex, limiting the extraction of important information during experiments. Here we report an in vitro model that by simple means creates an anaerobic environment for microbiota growing on living, cultured human epithelium under physiological flow. This model enables long-term co-culture of intestinal epithelial cells with obligate anaerobic bacteria, exemplified here by Clostridioides difficile and Bacteroides fragilis. Anaerobic conditions are maintained through the integration of an anaerobization unit, developed to facilitate online deoxygenation of media via liquid-to-liquid gas diffusion, eliminating the need for encapsulation in complex gas chambers. We show that stable oxygen levels of less than 1% can be maintained in the model for several days without compromising the viability of the intestinal epithelium. Furthermore, we demonstrate the performance of the model by simulating prolonged colonization with C. difficile and B. fragilis, as well as the clinically relevant persistence of C. difficile following treatment with vancomycin.
format Article
id doaj-art-72bc7128980c4981a04aae882c3d94fe
institution Kabale University
issn 2055-5008
language English
publishDate 2025-08-01
publisher Nature Portfolio
record_format Article
series npj Biofilms and Microbiomes
spelling doaj-art-72bc7128980c4981a04aae882c3d94fe2025-08-20T04:01:52ZengNature Portfolionpj Biofilms and Microbiomes2055-50082025-08-0111111310.1038/s41522-025-00800-zAn anaerobic in vitro flow model for studying interactions at the gastrointestinal host–microbe interfaceL. L. Bang0J. S. Pettersen1N. Høiland2A. M. Rojek3D. R. Tornby4J. Møller-Jensen5U. S. Justesen6R. M. Pedersen7T. E. Andersen8Department of Clinical Microbiology, Odense University HospitalDepartment of Clinical Microbiology, Odense University HospitalDepartment of Clinical Microbiology, Odense University HospitalDepartment of Pathology, Odense University HospitalDepartment of Clinical Microbiology, Odense University HospitalDepartment of Biochemistry and Molecular Biology, University of Southern DenmarkDepartment of Clinical Microbiology, Odense University HospitalDepartment of Clinical Microbiology, Odense University HospitalDepartment of Clinical Microbiology, Odense University HospitalAbstract In vitro research on host–microbe interactions in the human gut has been challenging due to the differing oxygen requirements of mammalian cells and intestinal microbiota. Few models of this environment have been developed, and those available are complex, limiting the extraction of important information during experiments. Here we report an in vitro model that by simple means creates an anaerobic environment for microbiota growing on living, cultured human epithelium under physiological flow. This model enables long-term co-culture of intestinal epithelial cells with obligate anaerobic bacteria, exemplified here by Clostridioides difficile and Bacteroides fragilis. Anaerobic conditions are maintained through the integration of an anaerobization unit, developed to facilitate online deoxygenation of media via liquid-to-liquid gas diffusion, eliminating the need for encapsulation in complex gas chambers. We show that stable oxygen levels of less than 1% can be maintained in the model for several days without compromising the viability of the intestinal epithelium. Furthermore, we demonstrate the performance of the model by simulating prolonged colonization with C. difficile and B. fragilis, as well as the clinically relevant persistence of C. difficile following treatment with vancomycin.https://doi.org/10.1038/s41522-025-00800-z
spellingShingle L. L. Bang
J. S. Pettersen
N. Høiland
A. M. Rojek
D. R. Tornby
J. Møller-Jensen
U. S. Justesen
R. M. Pedersen
T. E. Andersen
An anaerobic in vitro flow model for studying interactions at the gastrointestinal host–microbe interface
npj Biofilms and Microbiomes
title An anaerobic in vitro flow model for studying interactions at the gastrointestinal host–microbe interface
title_full An anaerobic in vitro flow model for studying interactions at the gastrointestinal host–microbe interface
title_fullStr An anaerobic in vitro flow model for studying interactions at the gastrointestinal host–microbe interface
title_full_unstemmed An anaerobic in vitro flow model for studying interactions at the gastrointestinal host–microbe interface
title_short An anaerobic in vitro flow model for studying interactions at the gastrointestinal host–microbe interface
title_sort anaerobic in vitro flow model for studying interactions at the gastrointestinal host microbe interface
url https://doi.org/10.1038/s41522-025-00800-z
work_keys_str_mv AT llbang ananaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT jspettersen ananaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT nhøiland ananaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT amrojek ananaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT drtornby ananaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT jmøllerjensen ananaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT usjustesen ananaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT rmpedersen ananaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT teandersen ananaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT llbang anaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT jspettersen anaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT nhøiland anaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT amrojek anaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT drtornby anaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT jmøllerjensen anaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT usjustesen anaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT rmpedersen anaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface
AT teandersen anaerobicinvitroflowmodelforstudyinginteractionsatthegastrointestinalhostmicrobeinterface