Exploring the Potential of Wi-Fi in Industrial Environments: A Comparative Performance Analysis of IEEE 802.11 Standards

The advent of Industry 4.0 brought about digitalisation and the integration of advanced technologies into industrial processes, with wireless networks emerging as a key enabler in the interconnection of smart devices, cyber–physical systems, and data analytics platforms. With the development of Indu...

Full description

Saved in:
Bibliographic Details
Main Authors: Luis M. Bartolín-Arnau, Federico Orozco-Santos, Víctor Sempere-Payá, Javier Silvestre-Blanes, Teresa Albero-Albero, David Llacer-Garcia
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Telecom
Subjects:
Online Access:https://www.mdpi.com/2673-4001/6/2/40
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The advent of Industry 4.0 brought about digitalisation and the integration of advanced technologies into industrial processes, with wireless networks emerging as a key enabler in the interconnection of smart devices, cyber–physical systems, and data analytics platforms. With the development of Industry 5.0 and its emphasis on human–machine collaboration, Wi-Fi has positioned itself as a viable alternative for industrial wireless connectivity, supporting seamless communication between robots, automation systems, and human operators. However, its adoption in critical applications remains limited due to persistent concerns over latency, reliability, and interference in shared-spectrum environments. This study evaluates the practical performance of Wi-Fi standards from 802.11n (Wi-Fi 4) to 802.11be (Wi-Fi 7) across three representative environments: residential, laboratory, and industrial. Six configurations were tested under consistent conditions, covering various frequency bands, channel widths, and traffic types. Results prove that Wi-Fi 6/6E delivers the best overall performance, particularly in low-interference 6 GHz scenarios. Wi-Fi 5 performs well in medium-range settings but is more sensitive to congestion, while Wi-Fi 4 consistently underperforms. Early Wi-Fi 7 hardware does not yet surpass Wi-Fi 6/6E consistently, reflecting its ongoing development. Despite these variations, the progression observed across generations clearly demonstrates incremental gains in throughput stability and latency control. While these improvements already provide tangible benefits for many industrial communication scenarios, the most significant leap in industrial applicability is expected to come from the effective implementation of high-efficiency mechanisms. These include OFDMA, TWT, scheduled uplink access, and enhanced QoS features. These capabilities, already embedded in the Wi-Fi 6 and 7 standards, represent the necessary foundation to move beyond conventional best-effort connectivity and toward supporting critical, latency-sensitive industrial applications.
ISSN:2673-4001