Deep ensemble learning-driven fully automated multi-structure segmentation for precision craniomaxillofacial surgery

ObjectivesAccurate segmentation of craniomaxillofacial (CMF) structures and individual teeth is essential for advancing computer-assisted CMF surgery. This study developed CMF-ELSeg, a novel fully automatic multi-structure segmentation model based on deep ensemble learning.MethodsA total of 143 CMF...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiahao Bao, Zongcai Tan, Yifeng Sun, Xinyu Xu, Huazhen Liu, Weiyi Cui, Yang Yang, Mengjia Cheng, Yiming Wang, Congshuang Ku, Yuen Ka Ho, Jiayi Zhu, Linfeng Fan, Dahong Qian, Shunyao Shen, Yaofeng Wen, Hongbo Yu
Format: Article
Language:English
Published: Frontiers Media S.A. 2025-05-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fbioe.2025.1580502/full
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ObjectivesAccurate segmentation of craniomaxillofacial (CMF) structures and individual teeth is essential for advancing computer-assisted CMF surgery. This study developed CMF-ELSeg, a novel fully automatic multi-structure segmentation model based on deep ensemble learning.MethodsA total of 143 CMF computed tomography (CT) scans were retrospectively collected and manually annotated by experts for model training and validation. Three 3D U-Net–based deep learning models (V-Net, nnU-Net, and 3D UX-Net) were benchmarked. CMF-ELSeg employed a coarse-to-fine cascaded architecture and an ensemble approach to integrate the strengths of these models. Segmentation performance was evaluated using Dice score and Intersection over Union (IoU) by comparing model predictions to ground truth annotations. Clinical feasibility was assessed through qualitative and quantitative analyses.ResultsIn coarse segmentation of the upper skull, mandible, cervical vertebra, and pharyngeal cavity, 3D UX-Net and nnU-Net achieved Dice scores above 0.96 and IoU above 0.93. For fine segmentation and classification of individual teeth, the cascaded 3D UX-Net performed best. CMF-ELSeg improved Dice scores by 3%–5% over individual models for facial soft tissue, upper skull, mandible, cervical vertebra, and pharyngeal cavity segmentation, and maintained high accuracy Dice > 0.94 for most teeth. Clinical evaluation confirmed that CMF-ELSeg performed reliably in patients with skeletal malocclusion, fractures, and fibrous dysplasia.ConclusionCMF-ELSeg provides high-precision segmentation of CMF structures and teeth by leveraging multiple models, serving as a practical tool for clinical applications and enhancing patient-specific treatment planning in CMF surgery.
ISSN:2296-4185