A Note on the Discrete Spectrum of Gaussian Wells (I): The Ground State Energy in One Dimension

The ground state energy E0(λ) of Hλ=-d2/dx2-λe-x2 is computed for small values of λ by means of an approximation of an integral operator in momentum space. Such an approximation leads to a transcendental equation for which ϵ0(λ)=|E0(λ)|1/2 is the root.

Saved in:
Bibliographic Details
Main Authors: G. Muchatibaya, S. Fassari, F. Rinaldi, J. Mushanyu
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Mathematical Physics
Online Access:http://dx.doi.org/10.1155/2016/2125769
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832554963675381760
author G. Muchatibaya
S. Fassari
F. Rinaldi
J. Mushanyu
author_facet G. Muchatibaya
S. Fassari
F. Rinaldi
J. Mushanyu
author_sort G. Muchatibaya
collection DOAJ
description The ground state energy E0(λ) of Hλ=-d2/dx2-λe-x2 is computed for small values of λ by means of an approximation of an integral operator in momentum space. Such an approximation leads to a transcendental equation for which ϵ0(λ)=|E0(λ)|1/2 is the root.
format Article
id doaj-art-7241f15953a84dbe8b7e19438f4d3aa9
institution Kabale University
issn 1687-9120
1687-9139
language English
publishDate 2016-01-01
publisher Wiley
record_format Article
series Advances in Mathematical Physics
spelling doaj-art-7241f15953a84dbe8b7e19438f4d3aa92025-02-03T05:49:56ZengWileyAdvances in Mathematical Physics1687-91201687-91392016-01-01201610.1155/2016/21257692125769A Note on the Discrete Spectrum of Gaussian Wells (I): The Ground State Energy in One DimensionG. Muchatibaya0S. Fassari1F. Rinaldi2J. Mushanyu3Department of Mathematics, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, ZimbabweUniversitá Degli Studi Guglielmo Marconi, Via Plinio 44, 00193 Rome, ItalyUniversitá Degli Studi Guglielmo Marconi, Via Plinio 44, 00193 Rome, ItalyDepartment of Mathematics, University of Zimbabwe, P.O. Box MP167, Mount Pleasant, Harare, ZimbabweThe ground state energy E0(λ) of Hλ=-d2/dx2-λe-x2 is computed for small values of λ by means of an approximation of an integral operator in momentum space. Such an approximation leads to a transcendental equation for which ϵ0(λ)=|E0(λ)|1/2 is the root.http://dx.doi.org/10.1155/2016/2125769
spellingShingle G. Muchatibaya
S. Fassari
F. Rinaldi
J. Mushanyu
A Note on the Discrete Spectrum of Gaussian Wells (I): The Ground State Energy in One Dimension
Advances in Mathematical Physics
title A Note on the Discrete Spectrum of Gaussian Wells (I): The Ground State Energy in One Dimension
title_full A Note on the Discrete Spectrum of Gaussian Wells (I): The Ground State Energy in One Dimension
title_fullStr A Note on the Discrete Spectrum of Gaussian Wells (I): The Ground State Energy in One Dimension
title_full_unstemmed A Note on the Discrete Spectrum of Gaussian Wells (I): The Ground State Energy in One Dimension
title_short A Note on the Discrete Spectrum of Gaussian Wells (I): The Ground State Energy in One Dimension
title_sort note on the discrete spectrum of gaussian wells i the ground state energy in one dimension
url http://dx.doi.org/10.1155/2016/2125769
work_keys_str_mv AT gmuchatibaya anoteonthediscretespectrumofgaussianwellsithegroundstateenergyinonedimension
AT sfassari anoteonthediscretespectrumofgaussianwellsithegroundstateenergyinonedimension
AT frinaldi anoteonthediscretespectrumofgaussianwellsithegroundstateenergyinonedimension
AT jmushanyu anoteonthediscretespectrumofgaussianwellsithegroundstateenergyinonedimension
AT gmuchatibaya noteonthediscretespectrumofgaussianwellsithegroundstateenergyinonedimension
AT sfassari noteonthediscretespectrumofgaussianwellsithegroundstateenergyinonedimension
AT frinaldi noteonthediscretespectrumofgaussianwellsithegroundstateenergyinonedimension
AT jmushanyu noteonthediscretespectrumofgaussianwellsithegroundstateenergyinonedimension