First ElGamal Encryption/Decryption Scheme Based on Spiking Neural P Systems with Communication on Request, Weights on Synapses, and Delays in Rules
During the last five years, spiking neural P (SN P) systems have attracted a lot of attention in the field of cryptography since these systems can more efficiently support advanced and complex cryptographic algorithms due to their high computational capabilities. Specifically, these systems can be s...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/9/1366 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1850032059097022464 |
|---|---|
| author | Irepan Rangel Daniel-Eduardo Vázquez Eduardo Vázquez Gonzalo Duchen Juan-Gerardo Avalos Giovanny Sanchez |
| author_facet | Irepan Rangel Daniel-Eduardo Vázquez Eduardo Vázquez Gonzalo Duchen Juan-Gerardo Avalos Giovanny Sanchez |
| author_sort | Irepan Rangel |
| collection | DOAJ |
| description | During the last five years, spiking neural P (SN P) systems have attracted a lot of attention in the field of cryptography since these systems can more efficiently support advanced and complex cryptographic algorithms due to their high computational capabilities. Specifically, these systems can be seen as a potential solution to efficiently performing asymmetric algorithms, which are more demanding than symmetric systems. This factor becomes critical, especially in resource-constrained single-board computer systems, since many of these systems are currently used to ensure the security of IoT applications in portable systems. In this work, we present for the first time the implementation of an asymmetric encryption algorithm called ElGamal based on spiking neural P systems and their cutting-edge variants. The proposed design involves the encryption and decryption processes. Specifically, we propose the design of a neural network to efficiently perform the extended Euclidean algorithm used in the decryption task. Here, we exert major efforts to create a compact and high-performance circuit to perform the extended Euclidean algorithm since the calculation of this algorithm is the most demanding when the decryption process is required. Finally, we perform several tests to show the computational capabilities of our proposal in comparison to conventional implementations on single-board computer systems. Our results show that the proposed encryption/decryption scheme potentially allows its use to ensure confidentiality, data integrity, and secure authentication, among other applications for resource-constrained embedded systems. |
| format | Article |
| id | doaj-art-7220eb52f2af4c7aaa5b9a56ddc99b5c |
| institution | DOAJ |
| issn | 2227-7390 |
| language | English |
| publishDate | 2025-04-01 |
| publisher | MDPI AG |
| record_format | Article |
| series | Mathematics |
| spelling | doaj-art-7220eb52f2af4c7aaa5b9a56ddc99b5c2025-08-20T02:58:47ZengMDPI AGMathematics2227-73902025-04-01139136610.3390/math13091366First ElGamal Encryption/Decryption Scheme Based on Spiking Neural P Systems with Communication on Request, Weights on Synapses, and Delays in RulesIrepan Rangel0Daniel-Eduardo Vázquez1Eduardo Vázquez2Gonzalo Duchen3Juan-Gerardo Avalos4Giovanny Sanchez5Instituto Politécnico Nacional, ESIME Culhuacan, Av. Santa Ana No. 1000, Ciudad de México 04260, MexicoInstituto Politécnico Nacional, ESIME Culhuacan, Av. Santa Ana No. 1000, Ciudad de México 04260, MexicoInstituto Politécnico Nacional, ESIME Culhuacan, Av. Santa Ana No. 1000, Ciudad de México 04260, MexicoInstituto Politécnico Nacional, ESIME Culhuacan, Av. Santa Ana No. 1000, Ciudad de México 04260, MexicoInstituto Politécnico Nacional, ESIME Culhuacan, Av. Santa Ana No. 1000, Ciudad de México 04260, MexicoInstituto Politécnico Nacional, ESIME Culhuacan, Av. Santa Ana No. 1000, Ciudad de México 04260, MexicoDuring the last five years, spiking neural P (SN P) systems have attracted a lot of attention in the field of cryptography since these systems can more efficiently support advanced and complex cryptographic algorithms due to their high computational capabilities. Specifically, these systems can be seen as a potential solution to efficiently performing asymmetric algorithms, which are more demanding than symmetric systems. This factor becomes critical, especially in resource-constrained single-board computer systems, since many of these systems are currently used to ensure the security of IoT applications in portable systems. In this work, we present for the first time the implementation of an asymmetric encryption algorithm called ElGamal based on spiking neural P systems and their cutting-edge variants. The proposed design involves the encryption and decryption processes. Specifically, we propose the design of a neural network to efficiently perform the extended Euclidean algorithm used in the decryption task. Here, we exert major efforts to create a compact and high-performance circuit to perform the extended Euclidean algorithm since the calculation of this algorithm is the most demanding when the decryption process is required. Finally, we perform several tests to show the computational capabilities of our proposal in comparison to conventional implementations on single-board computer systems. Our results show that the proposed encryption/decryption scheme potentially allows its use to ensure confidentiality, data integrity, and secure authentication, among other applications for resource-constrained embedded systems.https://www.mdpi.com/2227-7390/13/9/1366membrane computingSNQ P systemsElGamalcryptographic algorithms |
| spellingShingle | Irepan Rangel Daniel-Eduardo Vázquez Eduardo Vázquez Gonzalo Duchen Juan-Gerardo Avalos Giovanny Sanchez First ElGamal Encryption/Decryption Scheme Based on Spiking Neural P Systems with Communication on Request, Weights on Synapses, and Delays in Rules Mathematics membrane computing SNQ P systems ElGamal cryptographic algorithms |
| title | First ElGamal Encryption/Decryption Scheme Based on Spiking Neural P Systems with Communication on Request, Weights on Synapses, and Delays in Rules |
| title_full | First ElGamal Encryption/Decryption Scheme Based on Spiking Neural P Systems with Communication on Request, Weights on Synapses, and Delays in Rules |
| title_fullStr | First ElGamal Encryption/Decryption Scheme Based on Spiking Neural P Systems with Communication on Request, Weights on Synapses, and Delays in Rules |
| title_full_unstemmed | First ElGamal Encryption/Decryption Scheme Based on Spiking Neural P Systems with Communication on Request, Weights on Synapses, and Delays in Rules |
| title_short | First ElGamal Encryption/Decryption Scheme Based on Spiking Neural P Systems with Communication on Request, Weights on Synapses, and Delays in Rules |
| title_sort | first elgamal encryption decryption scheme based on spiking neural p systems with communication on request weights on synapses and delays in rules |
| topic | membrane computing SNQ P systems ElGamal cryptographic algorithms |
| url | https://www.mdpi.com/2227-7390/13/9/1366 |
| work_keys_str_mv | AT irepanrangel firstelgamalencryptiondecryptionschemebasedonspikingneuralpsystemswithcommunicationonrequestweightsonsynapsesanddelaysinrules AT danieleduardovazquez firstelgamalencryptiondecryptionschemebasedonspikingneuralpsystemswithcommunicationonrequestweightsonsynapsesanddelaysinrules AT eduardovazquez firstelgamalencryptiondecryptionschemebasedonspikingneuralpsystemswithcommunicationonrequestweightsonsynapsesanddelaysinrules AT gonzaloduchen firstelgamalencryptiondecryptionschemebasedonspikingneuralpsystemswithcommunicationonrequestweightsonsynapsesanddelaysinrules AT juangerardoavalos firstelgamalencryptiondecryptionschemebasedonspikingneuralpsystemswithcommunicationonrequestweightsonsynapsesanddelaysinrules AT giovannysanchez firstelgamalencryptiondecryptionschemebasedonspikingneuralpsystemswithcommunicationonrequestweightsonsynapsesanddelaysinrules |