Entanglement content of kink excitations

Abstract Quantum one-dimensional systems in their ordered phase admit kinks as elementary excitations above their symmetry-broken vacua. While the scattering properties of the kinks resemble those of quasiparticles, they have distinct locality features that are manifest in their entanglement content...

Full description

Saved in:
Bibliographic Details
Main Authors: Luca Capizzi, Michele Mazzoni
Format: Article
Language:English
Published: SpringerOpen 2025-02-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP02(2025)025
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Quantum one-dimensional systems in their ordered phase admit kinks as elementary excitations above their symmetry-broken vacua. While the scattering properties of the kinks resemble those of quasiparticles, they have distinct locality features that are manifest in their entanglement content. In this work, we study the entanglement entropy of kink excitations. We first present detailed calculations for specific states of a spin-1/2 chain to highlight the salient features of these excitations. Second, we provide a field-theoretic framework based on the algebraic relations between the twist fields and the semilocal fields associated with the excitations, and we compute the Rényi entropies in this framework. We obtain universal predictions for the entropy difference between the excited states with a finite number of kinks and the symmetry-broken ground states, which do not depend on the microscopic details of the model in the limit of large regions. Finally, we discuss some consequences of the Kramers-Wannier duality, which relates the ordered and disordered phases of the Ising model, and we explain why, counterintuitively, no explicit relations between those phases are found at the level of entanglement.
ISSN:1029-8479