Nanostructured Hydrogenated Silicon Films by Hot-Wire Chemical Vapor Deposition: the Influence of Substrate Temperature on Material Properties
Thin films of hydrogenated nanocrystalline silicon are prepared at reasonably higher deposition rates (9-13 Å/s) by indigenously fabricated hot-wire chemical vapor deposition system at various substrate temperatures (Ts). In this paper we report extensively studied structural, optical and electrical...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Sumy State University
2011-01-01
|
| Series: | Журнал нано- та електронної фізики |
| Subjects: | |
| Online Access: | http://jnep.sumdu.edu.ua/download/numbers/2011/1,%20Part%203/articles/jnep_2011_V3_N1(Part3)_590-600.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Thin films of hydrogenated nanocrystalline silicon are prepared at reasonably higher deposition rates (9-13 Å/s) by indigenously fabricated hot-wire chemical vapor deposition system at various substrate temperatures (Ts). In this paper we report extensively studied structural, optical and electrical properties of these films by Fourier transform infrared (FTIR) spectroscopy, low angle X-ray diffraction (low angle XRD), micro-Raman spectroscopy and UV-Visible spectroscopy. The low angle XRD and micro-Raman spectroscopy analysis indicate amorphous-to-nanocrystalline transition occurred at Ts = 300 °C. It is observed that volume fraction of crystallites and its size increases with increase in Ts. The low angle XRD study also shows nc-Si:H films with well-identified lattice planes of (111) orientation. In addition, it is observed from the FTIR spectroscopy that the hydrogen is incorporated in the film mainly in Si-H2 and (Si-H2)n complexes. The nc-Si:H films with low hydrogen content (< 4 at. %) and wide band gap (1.83-1.89 eV) and low refractive index (< 3) is useful for various device applications. |
|---|---|
| ISSN: | 2077-6772 |