New pathways to control the evolution of the atomic motion in metallic glasses

Metallic glass formers are a relatively new entry in glass physics, which has attracted large interest in both physics and materials science communities due to the unique mechanical and structural properties of these materials. Physical aging is however one of the main obstacle to their widespread u...

Full description

Saved in:
Bibliographic Details
Main Authors: Cornet, Antoine, Ruta, Beatrice
Format: Article
Language:English
Published: Académie des sciences 2023-04-01
Series:Comptes Rendus. Physique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.149/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Metallic glass formers are a relatively new entry in glass physics, which has attracted large interest in both physics and materials science communities due to the unique mechanical and structural properties of these materials. Physical aging is however one of the main obstacle to their widespread use as it affects their properties at all length scales. The knowledge of the microscopic mechanisms inducing aging and relaxation is therefore extremely important for both fundamental and applied sciences. In this article we present a review of the recent advances made with the X-ray photon correlation spectroscopy technique on the study of the collective particle motion and physical aging in metallic glasses at the atomic level. We show that a careful tuning of the sample preparation or the application of specific thermal protocols have the potential to drive the glass into more aged or rejuvenated microscopic configurations with different stabilities.
ISSN:1878-1535