Enteric Delivery of Probiotics: Challenges, Techniques, and Activity Assays
Probiotics, as live microbial agents, play a pivotal role in modulating host microbiota balance, enhancing immunity, and improving gastrointestinal health. However, their application is hindered by critical challenges, such as inactivation during processing, storage, and gastrointestinal delivery, a...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Foods |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-8158/14/13/2318 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Probiotics, as live microbial agents, play a pivotal role in modulating host microbiota balance, enhancing immunity, and improving gastrointestinal health. However, their application is hindered by critical challenges, such as inactivation during processing, storage, and gastrointestinal delivery, as well as low colonization efficiency. This article comprehensively reviews recent advances in probiotic delivery systems, focusing on innovative technologies, including hydrogels, nanocoatings, emulsions, and core–shell microgels. It provides an in-depth analysis of natural polyphenol-based nanocoatings and metal–phenolic network (MPN) single-cell encapsulation strategies for enhancing bacterial survival rates while highlighting the unique potential of microalgae-based bio-carriers in targeted delivery. Research demonstrates that well-designed edible delivery systems can effectively preserve probiotic viability and enable controlled intestinal release, offering novel strategies to reshape a healthy gut microbiome. While these systems show promise in maintaining probiotic activity and gut colonization, challenges remain in safety, scalable production, and clinical translation. Overcoming these barriers is crucial to fully harnessing probiotics for human health. |
|---|---|
| ISSN: | 2304-8158 |