Extended Bargmann FDA and non-relativistic gravity

In this paper we consider the construction of a free differential algebra as an extension of the extended Bargmann algebra in arbitrary dimensions. This is achieved by introducing a new Maurer-Cartan equation for a three-form gauge multiplet in the adjoint representation of the extended Bargmann alg...

Full description

Saved in:
Bibliographic Details
Main Authors: Ariana Muñoz, Gustavo Rubio, Sebastián Salgado
Format: Article
Language:English
Published: Elsevier 2025-05-01
Series:Nuclear Physics B
Online Access:http://www.sciencedirect.com/science/article/pii/S055032132500094X
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849739604600553472
author Ariana Muñoz
Gustavo Rubio
Sebastián Salgado
author_facet Ariana Muñoz
Gustavo Rubio
Sebastián Salgado
author_sort Ariana Muñoz
collection DOAJ
description In this paper we consider the construction of a free differential algebra as an extension of the extended Bargmann algebra in arbitrary dimensions. This is achieved by introducing a new Maurer-Cartan equation for a three-form gauge multiplet in the adjoint representation of the extended Bargmann algebra. The new Maurer-Cartan equation is provided of non-triviality by means of the introduction of a four-form cocycle, representative of a Chevalley-Eilenberg cohomology class. We derive the corresponding dual L∞ algebra and, by using the formalism of non-linear realizations, propose a five-dimensional gauge invariant action principle. Then, we derive the corresponding equations of motion and study how the presence of the three-form gauge fields and the four-cocycle modify the corresponding non-relativistic dynamics.
format Article
id doaj-art-71ca2fbe39c54aabaaa993752f82782c
institution DOAJ
issn 0550-3213
language English
publishDate 2025-05-01
publisher Elsevier
record_format Article
series Nuclear Physics B
spelling doaj-art-71ca2fbe39c54aabaaa993752f82782c2025-08-20T03:06:13ZengElsevierNuclear Physics B0550-32132025-05-01101411688510.1016/j.nuclphysb.2025.116885Extended Bargmann FDA and non-relativistic gravityAriana Muñoz0Gustavo Rubio1Sebastián Salgado2Departamento de Óptica, Facultad de Física, Universidad Complutense, 28040 Madrid, Spain; Facultad de Ingenierıa, Universidad Autónoma de Chile, 5 Poniente 1670, Talca, ChileFacultad de Ingenierıa, Universidad Autónoma de Chile, 5 Poniente 1670, Talca, ChileInstituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, Chile; Corresponding author.In this paper we consider the construction of a free differential algebra as an extension of the extended Bargmann algebra in arbitrary dimensions. This is achieved by introducing a new Maurer-Cartan equation for a three-form gauge multiplet in the adjoint representation of the extended Bargmann algebra. The new Maurer-Cartan equation is provided of non-triviality by means of the introduction of a four-form cocycle, representative of a Chevalley-Eilenberg cohomology class. We derive the corresponding dual L∞ algebra and, by using the formalism of non-linear realizations, propose a five-dimensional gauge invariant action principle. Then, we derive the corresponding equations of motion and study how the presence of the three-form gauge fields and the four-cocycle modify the corresponding non-relativistic dynamics.http://www.sciencedirect.com/science/article/pii/S055032132500094X
spellingShingle Ariana Muñoz
Gustavo Rubio
Sebastián Salgado
Extended Bargmann FDA and non-relativistic gravity
Nuclear Physics B
title Extended Bargmann FDA and non-relativistic gravity
title_full Extended Bargmann FDA and non-relativistic gravity
title_fullStr Extended Bargmann FDA and non-relativistic gravity
title_full_unstemmed Extended Bargmann FDA and non-relativistic gravity
title_short Extended Bargmann FDA and non-relativistic gravity
title_sort extended bargmann fda and non relativistic gravity
url http://www.sciencedirect.com/science/article/pii/S055032132500094X
work_keys_str_mv AT arianamunoz extendedbargmannfdaandnonrelativisticgravity
AT gustavorubio extendedbargmannfdaandnonrelativisticgravity
AT sebastiansalgado extendedbargmannfdaandnonrelativisticgravity