Fuzzy-Based Fitness–Distance Balance Snow Ablation Optimizer Algorithm for Optimal Generation Planning in Power Systems

Economic dispatch (ED) is one of the most important problems in terms of energy planning, management, and operation in power systems. This study presents a snow ablation optimizer (SAO) algorithm developed with the fuzzy-based fitness–distance balance (FFDB) method for solving ED problems in small-,...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammet Demirbas, Serhat Duman, Burcin Ozkaya, Yunus Balci, Deniz Ersoy, M. Kenan Döşoğlu, Ugur Guvenc, Bekir Emre Altun, Hasan Uzel, Enes Kaymaz
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/12/3048
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Economic dispatch (ED) is one of the most important problems in terms of energy planning, management, and operation in power systems. This study presents a snow ablation optimizer (SAO) algorithm developed with the fuzzy-based fitness–distance balance (FFDB) method for solving ED problems in small-, medium- and large-scale electric power systems and determining the optimal operating values of fossil fuel thermal generation units. The FFDB-based SAO algorithm (FFDBSAO) controls early convergence problems through balancing exploration–exploitation and improves the solving of high-dimensional optimization problems. In the light of extensive experimental studies conducted on CEC2020, CEC2022, and classical benchmark test functions, the FFDBSAO2 algorithm has shown superior performance against its competitors. Wilcoxon and Friedman’s statistical analysis results confirm the performance and efficiency of the algorithm. Moreover, the proposed algorithm significantly reduces total fuel cost by optimizing fossil fuel thermal generation units. According to the results, the scalability and robustness of the algorithm make it a valuable tool for solving large-scale optimization problems in the planning of electric power systems.
ISSN:1996-1073