In this article we characterize the cyclicity of bounded composition operators $C_\phi f=f\circ \phi $ on the Paley–Wiener spaces of entire functions $B^2_\sigma $ for $\sigma >0$. We show that $C_\phi $ is cyclic precisely when $\phi (z)=z+b$ where either $b\in \mathbb{C}\setminus \mathbb{R}$ or...

Full description

Saved in:
Bibliographic Details
Main Authors: Viet Hai, Pham, Noor, Waleed, Reis Severiano, Osmar
Format: Article
Language:English
Published: Académie des sciences 2025-07-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.765/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849247451818491904
author Viet Hai, Pham
Noor, Waleed
Reis Severiano, Osmar
author_facet Viet Hai, Pham
Noor, Waleed
Reis Severiano, Osmar
author_sort Viet Hai, Pham
collection DOAJ
description In this article we characterize the cyclicity of bounded composition operators $C_\phi f=f\circ \phi $ on the Paley–Wiener spaces of entire functions $B^2_\sigma $ for $\sigma >0$. We show that $C_\phi $ is cyclic precisely when $\phi (z)=z+b$ where either $b\in \mathbb{C}\setminus \mathbb{R}$ or $b\in \mathbb{R}$ with $0<\vert b \vert \le \pi /\sigma $. We also describe when the reproducing kernels of $B^2_\sigma $ are cyclic vectors for $C_\phi $ and see that this is related to a question of completeness of exponential sequences in $L^2[-\sigma ,\sigma ]$. The interplay between cyclicity and complex symmetry plays a key role in this work.
format Article
id doaj-art-716992ffd46e48c8907ba919bbf10e1c
institution Kabale University
issn 1778-3569
language English
publishDate 2025-07-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-716992ffd46e48c8907ba919bbf10e1c2025-08-20T03:58:13ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692025-07-01363G987988610.5802/crmath.76510.5802/crmath.765Viet Hai, Pham0Noor, Waleed1Reis Severiano, Osmar2Faculty of Mathematics and Informatics, Hanoi University of Science and Technology, Khoa Toan-Tin, Dai hoc Bach khoa Hanoi, 1 Dai Co Viet, Hanoi, VietnamIMECC, Universidade Estadual de Campinas, Campinas-SP, BrazilIMECC, Universidade Estadual de Campinas, Campinas-SP, BrazilIn this article we characterize the cyclicity of bounded composition operators $C_\phi f=f\circ \phi $ on the Paley–Wiener spaces of entire functions $B^2_\sigma $ for $\sigma >0$. We show that $C_\phi $ is cyclic precisely when $\phi (z)=z+b$ where either $b\in \mathbb{C}\setminus \mathbb{R}$ or $b\in \mathbb{R}$ with $0<\vert b \vert \le \pi /\sigma $. We also describe when the reproducing kernels of $B^2_\sigma $ are cyclic vectors for $C_\phi $ and see that this is related to a question of completeness of exponential sequences in $L^2[-\sigma ,\sigma ]$. The interplay between cyclicity and complex symmetry plays a key role in this work.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.765/Cyclic operatorcomposition operatorPaley–Wiener space
spellingShingle Viet Hai, Pham
Noor, Waleed
Reis Severiano, Osmar
Comptes Rendus. Mathématique
Cyclic operator
composition operator
Paley–Wiener space
topic Cyclic operator
composition operator
Paley–Wiener space
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.765/