Nonseparated manifolds and completely unstable flows

We define an order structure on a nonseparated n-manifold. Here, a nonseparated manifold denotes any topological space that is locally Euclidean and has a countable basis; the usual Hausdorff separation property is not required. Our result is that an ordered nonseparated n-manifold X can be realized...

Full description

Saved in:
Bibliographic Details
Main Author: Sudhir K. Goel
Format: Article
Language:English
Published: Wiley 1987-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S016117128700084X
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We define an order structure on a nonseparated n-manifold. Here, a nonseparated manifold denotes any topological space that is locally Euclidean and has a countable basis; the usual Hausdorff separation property is not required. Our result is that an ordered nonseparated n-manifold X can be realized as an ordered orbit space of a completely unstable continuous flow ϕ on a Hausdorff (n+1)-manifold E.
ISSN:0161-1712
1687-0425