FAIR Jupyter: A Knowledge Graph Approach to Semantic Sharing and Granular Exploration of a Computational Notebook Reproducibility Dataset
The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the comput...
Saved in:
| Main Authors: | Samuel, Sheeba, Mietchen, Daniel |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
2024-12-01
|
| Series: | Transactions on Graph Data and Knowledge |
| Subjects: | |
| Online Access: | https://drops.dagstuhl.de/storage/08tgdk/tgdk-vol002/tgdk-vol002-issue002/TGDK.2.2.4/TGDK.2.2.4.pdf |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Python-Programmierung und Algorithmen mit Jupyter Notebooks: Ein Praxisbeispiel aus dem Informatikunterricht
by: Joachim Kutzera, et al.
Published: (2025-03-01) -
Застосування інтерактивного середовища Jupyter Notebook при проведенні інтегрованих уроків з інформатики та математики
by: Ярослав Крупський, et al.
Published: (2025-05-01) -
Automated Assessment of Quality of Jupyter Notebooks Using Artificial Intelligence and Big Code
by: Priti Oli, et al.
Published: (2021-04-01) -
Interactive Earth system data cube visualization in Jupyter notebooks
by: Maximilian Söchting, et al.
Published: (2025-04-01) -
HyperTaste Lab—A Notebook with a Machine Learning Pipeline for Chemical Sensor Arrays
by: Gianmarco Gabrieli, et al.
Published: (2024-03-01)