Spectroscopy of two-dimensional interacting lattice electrons using symmetry-aware neural backflow transformations

Abstract Neural networks have shown to be a powerful tool to represent the ground state of quantum many-body systems, including fermionic systems. However, efficiently integrating lattice symmetries into neural representations remains a significant challenge. In this work, we introduce a framework f...

Full description

Saved in:
Bibliographic Details
Main Authors: Imelda Romero, Jannes Nys, Giuseppe Carleo
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Communications Physics
Online Access:https://doi.org/10.1038/s42005-025-01955-z
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Neural networks have shown to be a powerful tool to represent the ground state of quantum many-body systems, including fermionic systems. However, efficiently integrating lattice symmetries into neural representations remains a significant challenge. In this work, we introduce a framework for embedding lattice symmetries in fermionic wavefunctions and demonstrate its ability to target both ground states and low-lying excitations. Using group-equivariant neural backflow transformations, we study the t-V model on a square lattice away from half-filling. Our symmetry-aware backflow significantly improves ground-state energies and yields accurate low-energy excitations for lattices up to 10 × 10. We also compute accurate two-point density-correlation functions and the structure factor to identify phase transitions and critical points. These findings introduce a symmetry-aware framework important for studying quantum materials and phase transitions.
ISSN:2399-3650