Digital Twin Network-Based 6G Self-Evolution

Digital twins (DTs) will revolutionize network autonomy. Recent studies have promoted the idea of a DT-native 6G network, deeply integrating DTs into mobile network architectures to improve the timeliness of physical–digital synchronization and network optimizations. However, DTs have mainly acted j...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuhong Huang, Mancong Kang, Yanhong Zhu, Na Li, Guangyi Liu, Qixing Wang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/11/3543
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Digital twins (DTs) will revolutionize network autonomy. Recent studies have promoted the idea of a DT-native 6G network, deeply integrating DTs into mobile network architectures to improve the timeliness of physical–digital synchronization and network optimizations. However, DTs have mainly acted just as a tool for network autonomy, leading to a gap regarding the ultimate goal of network self-evolution. This paper analyzes future directions concerning DT-native networks. Specifically, the proposed architecture introduces a key concept called “future shots” that gives accurate network predictions under different time scales of self-evolution strategies for various network elements. To realize the future shots, we propose a long-term hierarchical convolutional graph attention model for cost-effective network predictions, a conditional hierarchical graph neural network for strategy generation, and methods for efficient small-to-large-scale interactions. The architecture is expected to facilitate high-level network autonomy for 6G networks.
ISSN:1424-8220