New Periodic Solutions for the Singular Hamiltonian System
By use of the Cerami-Palais-Smale condition, we generalize the classical Weierstrass minimizing theorem to the singular case by allowing functions which attain infinity at some values. As an application, we study certain singular second-order Hamiltonian systems with strong force potential at the or...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2014/703539 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | By use of the Cerami-Palais-Smale condition, we generalize the classical Weierstrass minimizing theorem to the singular case by allowing functions which attain infinity at some values. As an application, we study certain singular second-order Hamiltonian systems with strong force potential at the origin and show the existence of new periodic solutions with fixed periods. |
---|---|
ISSN: | 1085-3375 1687-0409 |