Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart Farming
The majority of countries rely largely on agriculture for employment. Irrigation accounts for a sizable amount of water use. Crop irrigation is an important step in crop yield prediction. Field harvesting is very reliant on human supervision and experience. It is critical to safeguard the field’s wa...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2022-01-01
|
| Series: | Journal of Food Quality |
| Online Access: | http://dx.doi.org/10.1155/2022/3955514 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849414076704227328 |
|---|---|
| author | Abhishek Raghuvanshi Umesh Kumar Singh Guna Sekhar Sajja Harikumar Pallathadka Evans Asenso Mustafa Kamal Abha Singh Khongdet Phasinam |
| author_facet | Abhishek Raghuvanshi Umesh Kumar Singh Guna Sekhar Sajja Harikumar Pallathadka Evans Asenso Mustafa Kamal Abha Singh Khongdet Phasinam |
| author_sort | Abhishek Raghuvanshi |
| collection | DOAJ |
| description | The majority of countries rely largely on agriculture for employment. Irrigation accounts for a sizable amount of water use. Crop irrigation is an important step in crop yield prediction. Field harvesting is very reliant on human supervision and experience. It is critical to safeguard the field’s water supply. The shortage of fresh water is a major challenge for the world, and the situation will deteriorate further in the next years. As a result of the aforementioned challenges, smart irrigation and precision farming are the only viable solutions. Only with the emergence of the Internet of Things and machine learning have smart irrigation and precision agriculture become economically viable. Increased efficiency, expense optimization, energy maximization, forecasting, and general public convenience are all benefits of the Internet of Things (IoT). As systems and data processing become more diversified, security issues arise. Security and privacy concerns are impeding the growth of the Internet of Things. This article establishes a framework for detecting and classifying intrusions into IoT networks used in agriculture. Security and privacy are major concerns not only in agriculture-related IoT networks but in all applications of the Internet of Things as well. In this framework, the NSL KDD data set is used as an input data set. In the preprocessing of the NSL-KDD data set, first all symbolic features are converted to numeric features. Feature extraction is performed using principal component analysis. Then, machine learning algorithms such as support vector machine, linear regression, and random forest are used to classify preprocessed data set. Performance comparisons of machine learning algorithms are evaluated on the basis of accuracy, precision, and recall parameters. |
| format | Article |
| id | doaj-art-70b3e8cd91a5454ea41f84df95d426b1 |
| institution | Kabale University |
| issn | 1745-4557 |
| language | English |
| publishDate | 2022-01-01 |
| publisher | Wiley |
| record_format | Article |
| series | Journal of Food Quality |
| spelling | doaj-art-70b3e8cd91a5454ea41f84df95d426b12025-08-20T03:33:57ZengWileyJournal of Food Quality1745-45572022-01-01202210.1155/2022/3955514Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart FarmingAbhishek Raghuvanshi0Umesh Kumar Singh1Guna Sekhar Sajja2Harikumar Pallathadka3Evans Asenso4Mustafa Kamal5Abha Singh6Khongdet Phasinam7Mahakal Institute of TechnologyInstitute of Computer SciencesUniversity of the CumberlandsManipur International UniversityDepartment of Agricultural EngineeringDepartment of Basic SciencesDepartment of Basic SciencesPibulsongkram Rajabhat UniversityThe majority of countries rely largely on agriculture for employment. Irrigation accounts for a sizable amount of water use. Crop irrigation is an important step in crop yield prediction. Field harvesting is very reliant on human supervision and experience. It is critical to safeguard the field’s water supply. The shortage of fresh water is a major challenge for the world, and the situation will deteriorate further in the next years. As a result of the aforementioned challenges, smart irrigation and precision farming are the only viable solutions. Only with the emergence of the Internet of Things and machine learning have smart irrigation and precision agriculture become economically viable. Increased efficiency, expense optimization, energy maximization, forecasting, and general public convenience are all benefits of the Internet of Things (IoT). As systems and data processing become more diversified, security issues arise. Security and privacy concerns are impeding the growth of the Internet of Things. This article establishes a framework for detecting and classifying intrusions into IoT networks used in agriculture. Security and privacy are major concerns not only in agriculture-related IoT networks but in all applications of the Internet of Things as well. In this framework, the NSL KDD data set is used as an input data set. In the preprocessing of the NSL-KDD data set, first all symbolic features are converted to numeric features. Feature extraction is performed using principal component analysis. Then, machine learning algorithms such as support vector machine, linear regression, and random forest are used to classify preprocessed data set. Performance comparisons of machine learning algorithms are evaluated on the basis of accuracy, precision, and recall parameters.http://dx.doi.org/10.1155/2022/3955514 |
| spellingShingle | Abhishek Raghuvanshi Umesh Kumar Singh Guna Sekhar Sajja Harikumar Pallathadka Evans Asenso Mustafa Kamal Abha Singh Khongdet Phasinam Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart Farming Journal of Food Quality |
| title | Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart Farming |
| title_full | Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart Farming |
| title_fullStr | Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart Farming |
| title_full_unstemmed | Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart Farming |
| title_short | Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart Farming |
| title_sort | intrusion detection using machine learning for risk mitigation in iot enabled smart irrigation in smart farming |
| url | http://dx.doi.org/10.1155/2022/3955514 |
| work_keys_str_mv | AT abhishekraghuvanshi intrusiondetectionusingmachinelearningforriskmitigationiniotenabledsmartirrigationinsmartfarming AT umeshkumarsingh intrusiondetectionusingmachinelearningforriskmitigationiniotenabledsmartirrigationinsmartfarming AT gunasekharsajja intrusiondetectionusingmachinelearningforriskmitigationiniotenabledsmartirrigationinsmartfarming AT harikumarpallathadka intrusiondetectionusingmachinelearningforriskmitigationiniotenabledsmartirrigationinsmartfarming AT evansasenso intrusiondetectionusingmachinelearningforriskmitigationiniotenabledsmartirrigationinsmartfarming AT mustafakamal intrusiondetectionusingmachinelearningforriskmitigationiniotenabledsmartirrigationinsmartfarming AT abhasingh intrusiondetectionusingmachinelearningforriskmitigationiniotenabledsmartirrigationinsmartfarming AT khongdetphasinam intrusiondetectionusingmachinelearningforriskmitigationiniotenabledsmartirrigationinsmartfarming |