Utilizing MFCCs and TEO-MFCCs to Classify Stress in Females Using SSNNA

All individuals are susceptible to experiencing stress in their everyday lives. Nevertheless, stress has a greater influence on females due to both biological and environmental factors. This study utilized female speeches to detect and classify stress and no stress in women. Using speech, composed...

Full description

Saved in:
Bibliographic Details
Main Authors: Nur Aishah Zainal, Ani Liza Asnawi, Siti Noorjannah Ibrahim, Nor Fadhillah Mohamed Azmin, Norharyati Harum, Nora Mat Zin
Format: Article
Language:English
Published: IIUM Press, International Islamic University Malaysia 2025-01-01
Series:International Islamic University Malaysia Engineering Journal
Subjects:
Online Access:https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3411
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841549932620677120
author Nur Aishah Zainal
Ani Liza Asnawi
Siti Noorjannah Ibrahim
Nor Fadhillah Mohamed Azmin
Norharyati Harum
Nora Mat Zin
author_facet Nur Aishah Zainal
Ani Liza Asnawi
Siti Noorjannah Ibrahim
Nor Fadhillah Mohamed Azmin
Norharyati Harum
Nora Mat Zin
author_sort Nur Aishah Zainal
collection DOAJ
description All individuals are susceptible to experiencing stress in their everyday lives. Nevertheless, stress has a greater influence on females due to both biological and environmental factors. This study utilized female speeches to detect and classify stress and no stress in women. Using speech, composed of non-invasive and non-intrusive approaches, helps to identify stress better in females. A comparative analysis was conducted between Mel-frequency Cepstral Coefficients (MFCCs) and Teager Energy Operator- MFCCs (TEO-MFCCs) to determine the best speech feature for classifying emotions associated with stress and no-stress conditions for female voices. With the assistance of the Stress Speech Neural Network Architecture (SSNNA), an improved accuracy of 93.9% was achieved. This research showed that MFCCs enhanced higher-frequency components in stressed speech, distinguishing between stress and no-stress classes. This study shows that SSNNA achieved high accuracy with 14 female voices, confirming its ability to function independently of speaker identity. ABSTRAK: Semua individu terdedah kepada stres dalam kehidupan seharian mereka. Walau bagaimanapun, stres memberi pengaruh yang lebih besar terhadap wanita akibat faktor biologi dan persekitaran. Kajian ini menggunakan ucapan untuk mengesan dan mengklasifikasikan stres dan tiada stres dalam kalangan wanita. Penggunaan ucapan, yang merupakan pendekatan tidak invasif dan tidak mengganggu, membantu mengenal pasti tekanan dengan lebih baik dalam kalangan wanita. Analisis perbandingan telah dijalankan antara Mel-frequency Cepstral Coefficients (MFCCs) dan Teager Energy Operator-MFCCs (TEO-MFCCs). Tujuannya adalah untuk menentukan ciri ucapan terbaik bagi mengklasifikasikan emosi yang berkaitan dengan keadaan stres dan tiada stres bagi suara wanita. Dengan bantuan Stress Speech Neural Network Architecture (SSNNA), metrik prestasi yang lebih tinggi dengan ketepatan 93.9% telah dicapai. Penyelidikan ini menunjukkan bahawa MFCCs meningkatkan komponen frekuensi tinggi dalam ucapan yang stres, secara efektif membezakan antara kelas stres dan tiada stres. Kajian ini menunjukkan bahawa SSNNA mencapai ketepatan tinggi dengan 14 suara wanita, mengesahkan ia berfungsi secara bebas daripada identiti penutur.
format Article
id doaj-art-708e00824fe94d44b32661cac08f4d04
institution Kabale University
issn 1511-788X
2289-7860
language English
publishDate 2025-01-01
publisher IIUM Press, International Islamic University Malaysia
record_format Article
series International Islamic University Malaysia Engineering Journal
spelling doaj-art-708e00824fe94d44b32661cac08f4d042025-01-10T12:40:38ZengIIUM Press, International Islamic University MalaysiaInternational Islamic University Malaysia Engineering Journal1511-788X2289-78602025-01-0126110.31436/iiumej.v26i1.3411Utilizing MFCCs and TEO-MFCCs to Classify Stress in Females Using SSNNANur Aishah Zainal0https://orcid.org/0000-0002-3718-374XAni Liza Asnawi1https://orcid.org/0000-0003-1964-5661Siti Noorjannah Ibrahim2https://orcid.org/0000-0002-2892-5959Nor Fadhillah Mohamed Azmin3https://orcid.org/0000-0003-4299-8828Norharyati Harum4https://orcid.org/0000-0003-0068-6025Nora Mat Zin5https://orcid.org/0000-0002-0679-2534International Islamic University Malaysia International Islamic University Malaysia International Islamic University Malaysia International Islamic University Malaysia International Islamic University Malaysia International Islamic University Malaysia All individuals are susceptible to experiencing stress in their everyday lives. Nevertheless, stress has a greater influence on females due to both biological and environmental factors. This study utilized female speeches to detect and classify stress and no stress in women. Using speech, composed of non-invasive and non-intrusive approaches, helps to identify stress better in females. A comparative analysis was conducted between Mel-frequency Cepstral Coefficients (MFCCs) and Teager Energy Operator- MFCCs (TEO-MFCCs) to determine the best speech feature for classifying emotions associated with stress and no-stress conditions for female voices. With the assistance of the Stress Speech Neural Network Architecture (SSNNA), an improved accuracy of 93.9% was achieved. This research showed that MFCCs enhanced higher-frequency components in stressed speech, distinguishing between stress and no-stress classes. This study shows that SSNNA achieved high accuracy with 14 female voices, confirming its ability to function independently of speaker identity. ABSTRAK: Semua individu terdedah kepada stres dalam kehidupan seharian mereka. Walau bagaimanapun, stres memberi pengaruh yang lebih besar terhadap wanita akibat faktor biologi dan persekitaran. Kajian ini menggunakan ucapan untuk mengesan dan mengklasifikasikan stres dan tiada stres dalam kalangan wanita. Penggunaan ucapan, yang merupakan pendekatan tidak invasif dan tidak mengganggu, membantu mengenal pasti tekanan dengan lebih baik dalam kalangan wanita. Analisis perbandingan telah dijalankan antara Mel-frequency Cepstral Coefficients (MFCCs) dan Teager Energy Operator-MFCCs (TEO-MFCCs). Tujuannya adalah untuk menentukan ciri ucapan terbaik bagi mengklasifikasikan emosi yang berkaitan dengan keadaan stres dan tiada stres bagi suara wanita. Dengan bantuan Stress Speech Neural Network Architecture (SSNNA), metrik prestasi yang lebih tinggi dengan ketepatan 93.9% telah dicapai. Penyelidikan ini menunjukkan bahawa MFCCs meningkatkan komponen frekuensi tinggi dalam ucapan yang stres, secara efektif membezakan antara kelas stres dan tiada stres. Kajian ini menunjukkan bahawa SSNNA mencapai ketepatan tinggi dengan 14 suara wanita, mengesahkan ia berfungsi secara bebas daripada identiti penutur. https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3411stress detection via speechstress classification for femaleMFCCsCNN
spellingShingle Nur Aishah Zainal
Ani Liza Asnawi
Siti Noorjannah Ibrahim
Nor Fadhillah Mohamed Azmin
Norharyati Harum
Nora Mat Zin
Utilizing MFCCs and TEO-MFCCs to Classify Stress in Females Using SSNNA
International Islamic University Malaysia Engineering Journal
stress detection via speech
stress classification for female
MFCCs
CNN
title Utilizing MFCCs and TEO-MFCCs to Classify Stress in Females Using SSNNA
title_full Utilizing MFCCs and TEO-MFCCs to Classify Stress in Females Using SSNNA
title_fullStr Utilizing MFCCs and TEO-MFCCs to Classify Stress in Females Using SSNNA
title_full_unstemmed Utilizing MFCCs and TEO-MFCCs to Classify Stress in Females Using SSNNA
title_short Utilizing MFCCs and TEO-MFCCs to Classify Stress in Females Using SSNNA
title_sort utilizing mfccs and teo mfccs to classify stress in females using ssnna
topic stress detection via speech
stress classification for female
MFCCs
CNN
url https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/3411
work_keys_str_mv AT nuraishahzainal utilizingmfccsandteomfccstoclassifystressinfemalesusingssnna
AT anilizaasnawi utilizingmfccsandteomfccstoclassifystressinfemalesusingssnna
AT sitinoorjannahibrahim utilizingmfccsandteomfccstoclassifystressinfemalesusingssnna
AT norfadhillahmohamedazmin utilizingmfccsandteomfccstoclassifystressinfemalesusingssnna
AT norharyatiharum utilizingmfccsandteomfccstoclassifystressinfemalesusingssnna
AT noramatzin utilizingmfccsandteomfccstoclassifystressinfemalesusingssnna