An H-system for a revolution surface without boundary

We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a)=L/2, where N:𝒜⊂ℝ+→ℝ is a function depe...

Full description

Saved in:
Bibliographic Details
Main Authors: P. Amster, P. De Nápoli, M. C. Mariani
Format: Article
Language:English
Published: Wiley 2006-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/AAA/2006/93163
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832551398966820864
author P. Amster
P. De Nápoli
M. C. Mariani
author_facet P. Amster
P. De Nápoli
M. C. Mariani
author_sort P. Amster
collection DOAJ
description We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a)=L/2, where N:𝒜⊂ℝ+→ℝ is a function depending on H. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed H.
format Article
id doaj-art-708af2d02e704798b7833f38be4a840d
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2006-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-708af2d02e704798b7833f38be4a840d2025-02-03T06:01:36ZengWileyAbstract and Applied Analysis1085-33751687-04092006-01-01200610.1155/AAA/2006/9316393163An H-system for a revolution surface without boundaryP. Amster0P. De Nápoli1M. C. Mariani2FCEyN, Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires 1428, ArgentinaFCEyN, Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires 1428, ArgentinaDepartment of Mathematical Sciences, New Mexico State University Las Cruces, NM 88003-8001, USAWe study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a)=L/2, where N:𝒜⊂ℝ+→ℝ is a function depending on H. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed H.http://dx.doi.org/10.1155/AAA/2006/93163
spellingShingle P. Amster
P. De Nápoli
M. C. Mariani
An H-system for a revolution surface without boundary
Abstract and Applied Analysis
title An H-system for a revolution surface without boundary
title_full An H-system for a revolution surface without boundary
title_fullStr An H-system for a revolution surface without boundary
title_full_unstemmed An H-system for a revolution surface without boundary
title_short An H-system for a revolution surface without boundary
title_sort h system for a revolution surface without boundary
url http://dx.doi.org/10.1155/AAA/2006/93163
work_keys_str_mv AT pamster anhsystemforarevolutionsurfacewithoutboundary
AT pdenapoli anhsystemforarevolutionsurfacewithoutboundary
AT mcmariani anhsystemforarevolutionsurfacewithoutboundary
AT pamster hsystemforarevolutionsurfacewithoutboundary
AT pdenapoli hsystemforarevolutionsurfacewithoutboundary
AT mcmariani hsystemforarevolutionsurfacewithoutboundary