An H-system for a revolution surface without boundary
We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a)=L/2, where N:𝒜⊂ℝ+→ℝ is a function depe...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2006-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/AAA/2006/93163 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832551398966820864 |
---|---|
author | P. Amster P. De Nápoli M. C. Mariani |
author_facet | P. Amster P. De Nápoli M. C. Mariani |
author_sort | P. Amster |
collection | DOAJ |
description | We study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a
solution is equivalent to the solvability of a scalar equation
N(a)=L/2, where N:𝒜⊂ℝ+→ℝ is a function depending on H. Moreover, using the method of upper and lower solutions we
prove existence results for some particular examples. In
particular, applying a diagonal argument we prove the existence of
unbounded surfaces with prescribed H. |
format | Article |
id | doaj-art-708af2d02e704798b7833f38be4a840d |
institution | Kabale University |
issn | 1085-3375 1687-0409 |
language | English |
publishDate | 2006-01-01 |
publisher | Wiley |
record_format | Article |
series | Abstract and Applied Analysis |
spelling | doaj-art-708af2d02e704798b7833f38be4a840d2025-02-03T06:01:36ZengWileyAbstract and Applied Analysis1085-33751687-04092006-01-01200610.1155/AAA/2006/9316393163An H-system for a revolution surface without boundaryP. Amster0P. De Nápoli1M. C. Mariani2FCEyN, Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires 1428, ArgentinaFCEyN, Departamento de Matemática, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón I, Buenos Aires 1428, ArgentinaDepartment of Mathematical Sciences, New Mexico State University Las Cruces, NM 88003-8001, USAWe study the existence of solutions an H-system for a revolution surface without boundary for H depending on the radius f. Under suitable conditions we prove that the existence of a solution is equivalent to the solvability of a scalar equation N(a)=L/2, where N:𝒜⊂ℝ+→ℝ is a function depending on H. Moreover, using the method of upper and lower solutions we prove existence results for some particular examples. In particular, applying a diagonal argument we prove the existence of unbounded surfaces with prescribed H.http://dx.doi.org/10.1155/AAA/2006/93163 |
spellingShingle | P. Amster P. De Nápoli M. C. Mariani An H-system for a revolution surface without boundary Abstract and Applied Analysis |
title | An H-system for a revolution surface without boundary |
title_full | An H-system for a revolution surface without boundary |
title_fullStr | An H-system for a revolution surface without boundary |
title_full_unstemmed | An H-system for a revolution surface without boundary |
title_short | An H-system for a revolution surface without boundary |
title_sort | h system for a revolution surface without boundary |
url | http://dx.doi.org/10.1155/AAA/2006/93163 |
work_keys_str_mv | AT pamster anhsystemforarevolutionsurfacewithoutboundary AT pdenapoli anhsystemforarevolutionsurfacewithoutboundary AT mcmariani anhsystemforarevolutionsurfacewithoutboundary AT pamster hsystemforarevolutionsurfacewithoutboundary AT pdenapoli hsystemforarevolutionsurfacewithoutboundary AT mcmariani hsystemforarevolutionsurfacewithoutboundary |