Variant Gradient Projection Methods for the Minimization Problems
The gradient projection algorithm plays an important role in solving constrained convex minimization problems. In general, the gradient projection algorithm has only weak convergence in infinite-dimensional Hilbert spaces. Recently, H. K. Xu (2011) provided two modified gradient projection algorithm...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2012-01-01
|
| Series: | Abstract and Applied Analysis |
| Online Access: | http://dx.doi.org/10.1155/2012/792078 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The gradient projection algorithm plays an important role in solving constrained convex minimization problems. In general, the gradient projection algorithm has only weak convergence in infinite-dimensional Hilbert spaces. Recently, H. K. Xu (2011) provided two modified gradient projection algorithms which have strong convergence. Motivated by Xu’s work, in the present paper, we suggest three more simpler variant gradient projection methods so that strong convergence is guaranteed. |
|---|---|
| ISSN: | 1085-3375 1687-0409 |