2D Cd metal contacts via low-temperature van der Waals epitaxy towards high-performance 2D transistors
Abstract Two-dimensional (2D) semiconductors hold great promise for future electronics, yet the fabrication of clean ohmic electrical contacts remains a key challenge. Traditional lithography and metallization processes often introduce interfacial disorder, and recently developed electrode-transfer-...
Saved in:
| Main Authors: | , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-59174-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Two-dimensional (2D) semiconductors hold great promise for future electronics, yet the fabrication of clean ohmic electrical contacts remains a key challenge. Traditional lithography and metallization processes often introduce interfacial disorder, and recently developed electrode-transfer-based techniques are difficult to implement without contaminating the interfaces between 2D crystals and metals. Here, we demonstrate a low-temperature chemical vapor deposition (CVD)-based van der Waals (vdW) epitaxy method to grow 2D metal (Cd) electrodes, eliminating lithography, deposition, or transfer processes and enabling the damage-free integration of 2D semiconductors. This thermodynamic integration strategy significantly mitigates the interfacial disorder and metal-induced gap states (MIGS), leading to low contact resistance (R C) and near-zero barrier ohmic contacts. Cd-MoS2 field-effect transistors (FETs) exhibit R C down to 70–100 Ω·μm, on-state current densities up to 942 μA/μm, on/off ratios exceeding 108, and mobilities up to 160 cm2 V−1 s−1. These results position vdW epitaxially grown 2D metals as a promising contact technology for next-generation electronics beyond silicon. |
|---|---|
| ISSN: | 2041-1723 |