Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort

Research of Inflammatory Bowel Disease (IBD) involves integrating diverse and heterogeneous data sources, from clinical records to imaging and laboratory results, which presents significant challenges in data harmonization and exploration. These challenges are also reflected in the development of ma...

Full description

Saved in:
Bibliographic Details
Main Authors: Aldo Marzullo, Victor Savevski, Maddalena Menini, Alessandro Schilirò, Gianluca Franchellucci, Arianna Dal Buono, Cristina Bezzio, Roberto Gabbiadini, Cesare Hassan, Alessandro Repici, Alessandro Armuzzi
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Data
Subjects:
Online Access:https://www.mdpi.com/2306-5729/10/7/100
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849246325870166016
author Aldo Marzullo
Victor Savevski
Maddalena Menini
Alessandro Schilirò
Gianluca Franchellucci
Arianna Dal Buono
Cristina Bezzio
Roberto Gabbiadini
Cesare Hassan
Alessandro Repici
Alessandro Armuzzi
author_facet Aldo Marzullo
Victor Savevski
Maddalena Menini
Alessandro Schilirò
Gianluca Franchellucci
Arianna Dal Buono
Cristina Bezzio
Roberto Gabbiadini
Cesare Hassan
Alessandro Repici
Alessandro Armuzzi
author_sort Aldo Marzullo
collection DOAJ
description Research of Inflammatory Bowel Disease (IBD) involves integrating diverse and heterogeneous data sources, from clinical records to imaging and laboratory results, which presents significant challenges in data harmonization and exploration. These challenges are also reflected in the development of machine-learning applications, where inconsistencies in data quality, missing information, and variability in data formats can adversely affect the performance and generalizability of models. In this study, we describe the collection and curation of a comprehensive dataset focused on IBD. In addition, we present a dedicated research platform. We focus on ethical standards, data protection, and seamless integration of different data types. We also discuss the challenges encountered, as well as the insights gained during its implementation.
format Article
id doaj-art-6fd65bede840407b8e9f4e7f6076902a
institution Kabale University
issn 2306-5729
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Data
spelling doaj-art-6fd65bede840407b8e9f4e7f6076902a2025-08-20T03:58:31ZengMDPI AGData2306-57292025-06-0110710010.3390/data10070100Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian CohortAldo Marzullo0Victor Savevski1Maddalena Menini2Alessandro Schilirò3Gianluca Franchellucci4Arianna Dal Buono5Cristina Bezzio6Roberto Gabbiadini7Cesare Hassan8Alessandro Repici9Alessandro Armuzzi10IRCCS Humanitas Research Hospital-Via Manzoni 56, Rozzano, 20089 Milan, ItalyIRCCS Humanitas Research Hospital-Via Manzoni 56, Rozzano, 20089 Milan, ItalyIRCCS Humanitas Research Hospital-Via Manzoni 56, Rozzano, 20089 Milan, ItalyIRCCS Humanitas Research Hospital-Via Manzoni 56, Rozzano, 20089 Milan, ItalyIRCCS Humanitas Research Hospital-Via Manzoni 56, Rozzano, 20089 Milan, ItalyIRCCS Humanitas Research Hospital-Via Manzoni 56, Rozzano, 20089 Milan, ItalyIRCCS Humanitas Research Hospital-Via Manzoni 56, Rozzano, 20089 Milan, ItalyIRCCS Humanitas Research Hospital-Via Manzoni 56, Rozzano, 20089 Milan, ItalyIRCCS Humanitas Research Hospital-Via Manzoni 56, Rozzano, 20089 Milan, ItalyIRCCS Humanitas Research Hospital-Via Manzoni 56, Rozzano, 20089 Milan, ItalyIRCCS Humanitas Research Hospital-Via Manzoni 56, Rozzano, 20089 Milan, ItalyResearch of Inflammatory Bowel Disease (IBD) involves integrating diverse and heterogeneous data sources, from clinical records to imaging and laboratory results, which presents significant challenges in data harmonization and exploration. These challenges are also reflected in the development of machine-learning applications, where inconsistencies in data quality, missing information, and variability in data formats can adversely affect the performance and generalizability of models. In this study, we describe the collection and curation of a comprehensive dataset focused on IBD. In addition, we present a dedicated research platform. We focus on ethical standards, data protection, and seamless integration of different data types. We also discuss the challenges encountered, as well as the insights gained during its implementation.https://www.mdpi.com/2306-5729/10/7/100data integrationresearch platformmedical information systems
spellingShingle Aldo Marzullo
Victor Savevski
Maddalena Menini
Alessandro Schilirò
Gianluca Franchellucci
Arianna Dal Buono
Cristina Bezzio
Roberto Gabbiadini
Cesare Hassan
Alessandro Repici
Alessandro Armuzzi
Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort
Data
data integration
research platform
medical information systems
title Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort
title_full Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort
title_fullStr Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort
title_full_unstemmed Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort
title_short Collecting and Analyzing IBD Clinical Data for Machine-Learning: Insights from an Italian Cohort
title_sort collecting and analyzing ibd clinical data for machine learning insights from an italian cohort
topic data integration
research platform
medical information systems
url https://www.mdpi.com/2306-5729/10/7/100
work_keys_str_mv AT aldomarzullo collectingandanalyzingibdclinicaldataformachinelearninginsightsfromanitaliancohort
AT victorsavevski collectingandanalyzingibdclinicaldataformachinelearninginsightsfromanitaliancohort
AT maddalenamenini collectingandanalyzingibdclinicaldataformachinelearninginsightsfromanitaliancohort
AT alessandroschiliro collectingandanalyzingibdclinicaldataformachinelearninginsightsfromanitaliancohort
AT gianlucafranchellucci collectingandanalyzingibdclinicaldataformachinelearninginsightsfromanitaliancohort
AT ariannadalbuono collectingandanalyzingibdclinicaldataformachinelearninginsightsfromanitaliancohort
AT cristinabezzio collectingandanalyzingibdclinicaldataformachinelearninginsightsfromanitaliancohort
AT robertogabbiadini collectingandanalyzingibdclinicaldataformachinelearninginsightsfromanitaliancohort
AT cesarehassan collectingandanalyzingibdclinicaldataformachinelearninginsightsfromanitaliancohort
AT alessandrorepici collectingandanalyzingibdclinicaldataformachinelearninginsightsfromanitaliancohort
AT alessandroarmuzzi collectingandanalyzingibdclinicaldataformachinelearninginsightsfromanitaliancohort