Ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performance

Abstract Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity...

Full description

Saved in:
Bibliographic Details
Main Authors: Zachary E. Markow, Jason W. Trobaugh, Edward J. Richter, Kalyan Tripathy, Sean M. Rafferty, Alexandra M. Svoboda, Mariel L. Schroeder, Tracy M. Burns-Yocum, Karla M. Bergonzi, Mark A. Chevillet, Emily M. Mugler, Adam T. Eggebrecht, Joseph P. Culver
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-85858-7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832585918754586624
author Zachary E. Markow
Jason W. Trobaugh
Edward J. Richter
Kalyan Tripathy
Sean M. Rafferty
Alexandra M. Svoboda
Mariel L. Schroeder
Tracy M. Burns-Yocum
Karla M. Bergonzi
Mark A. Chevillet
Emily M. Mugler
Adam T. Eggebrecht
Joseph P. Culver
author_facet Zachary E. Markow
Jason W. Trobaugh
Edward J. Richter
Kalyan Tripathy
Sean M. Rafferty
Alexandra M. Svoboda
Mariel L. Schroeder
Tracy M. Burns-Yocum
Karla M. Bergonzi
Mark A. Chevillet
Emily M. Mugler
Adam T. Eggebrecht
Joseph P. Culver
author_sort Zachary E. Markow
collection DOAJ
description Abstract Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13–40 mm) afforded by the HD-DOT grid. Herein, simulations indicated reducing inter-optode spacing to 6.5 mm, creating a higher-density grid with more source-detector distances, would further improve image quality and noise-resolution tradeoff, with diminishing returns below 6.5 mm. We then constructed an ultra-high-density DOT system (6.5-mm spacing) with 140 dB dynamic range that imaged stimulus-evoked activations with 30–50% higher spatial resolution and repeatable multi-focal activity with excellent agreement with participant-matched fMRI. Further, this system decoded visual stimulus position with 19–35% lower error than previous HD-DOT, throughout occipital cortex.
format Article
id doaj-art-6fd601b020d1410d92f3daf9213351bf
institution Kabale University
issn 2045-2322
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-6fd601b020d1410d92f3daf9213351bf2025-01-26T12:23:56ZengNature PortfolioScientific Reports2045-23222025-01-0115111610.1038/s41598-025-85858-7Ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performanceZachary E. Markow0Jason W. Trobaugh1Edward J. Richter2Kalyan Tripathy3Sean M. Rafferty4Alexandra M. Svoboda5Mariel L. Schroeder6Tracy M. Burns-Yocum7Karla M. Bergonzi8Mark A. Chevillet9Emily M. Mugler10Adam T. Eggebrecht11Joseph P. Culver12Mallinckrodt Institute of Radiology, Washington University School of MedicineDepartment of Electrical and Systems Engineering, Washington University in St. LouisDepartment of Electrical and Systems Engineering, Washington University in St. LouisDepartment of Psychiatry, University of Pittsburgh Medical CenterMallinckrodt Institute of Radiology, Washington University School of MedicineCollege of Medicine, University of CincinnatiDepartment of Speech, Language, and Hearing Sciences, Purdue UniversityMallinckrodt Institute of Radiology, Washington University School of MedicineDepartment of Biomedical Engineering, Washington University in St. LouisMeta Reality LabsMeta Reality LabsMallinckrodt Institute of Radiology, Washington University School of MedicineMallinckrodt Institute of Radiology, Washington University School of MedicineAbstract Functional magnetic resonance imaging (fMRI) has dramatically advanced non-invasive human brain mapping and decoding. Functional near-infrared spectroscopy (fNIRS) and high-density diffuse optical tomography (HD-DOT) non-invasively measure blood oxygen fluctuations related to brain activity, like fMRI, at the brain surface, using more-lightweight equipment that circumvents ergonomic and logistical limitations of fMRI. HD-DOT grids have smaller inter-optode spacing (~ 13 mm) than sparse fNIRS (~ 30 mm) and therefore provide higher image quality, with spatial resolution ~ 1/2 that of fMRI, when using the several source-detector distances (13–40 mm) afforded by the HD-DOT grid. Herein, simulations indicated reducing inter-optode spacing to 6.5 mm, creating a higher-density grid with more source-detector distances, would further improve image quality and noise-resolution tradeoff, with diminishing returns below 6.5 mm. We then constructed an ultra-high-density DOT system (6.5-mm spacing) with 140 dB dynamic range that imaged stimulus-evoked activations with 30–50% higher spatial resolution and repeatable multi-focal activity with excellent agreement with participant-matched fMRI. Further, this system decoded visual stimulus position with 19–35% lower error than previous HD-DOT, throughout occipital cortex.https://doi.org/10.1038/s41598-025-85858-7OpticalNeuroimagingBrainNIRSRetinotopyfMRI
spellingShingle Zachary E. Markow
Jason W. Trobaugh
Edward J. Richter
Kalyan Tripathy
Sean M. Rafferty
Alexandra M. Svoboda
Mariel L. Schroeder
Tracy M. Burns-Yocum
Karla M. Bergonzi
Mark A. Chevillet
Emily M. Mugler
Adam T. Eggebrecht
Joseph P. Culver
Ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performance
Scientific Reports
Optical
Neuroimaging
Brain
NIRS
Retinotopy
fMRI
title Ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performance
title_full Ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performance
title_fullStr Ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performance
title_full_unstemmed Ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performance
title_short Ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performance
title_sort ultra high density imaging arrays in diffuse optical tomography for human brain mapping improve image quality and decoding performance
topic Optical
Neuroimaging
Brain
NIRS
Retinotopy
fMRI
url https://doi.org/10.1038/s41598-025-85858-7
work_keys_str_mv AT zacharyemarkow ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT jasonwtrobaugh ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT edwardjrichter ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT kalyantripathy ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT seanmrafferty ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT alexandramsvoboda ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT mariellschroeder ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT tracymburnsyocum ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT karlambergonzi ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT markachevillet ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT emilymmugler ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT adamteggebrecht ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance
AT josephpculver ultrahighdensityimagingarraysindiffuseopticaltomographyforhumanbrainmappingimproveimagequalityanddecodingperformance