On Solving Hyperbolic Trajectory Using New Predictor-Corrector Quadrature Algorithms

In this Paper, we proposed two new predictor corrector methods for solving Kepler's equation in hyperbolic case using quadrature formula which plays an important and significant rule in the evaluation of the integrals. The two procedures are developed that, in two or three iterations, solve the...

Full description

Saved in:
Bibliographic Details
Main Author: Baghdad Science Journal
Format: Article
Language:English
Published: University of Baghdad, College of Science for Women 2014-03-01
Series:مجلة بغداد للعلوم
Subjects:
Online Access:http://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/1549
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this Paper, we proposed two new predictor corrector methods for solving Kepler's equation in hyperbolic case using quadrature formula which plays an important and significant rule in the evaluation of the integrals. The two procedures are developed that, in two or three iterations, solve the hyperbolic orbit equation in a very efficient manner, and to an accuracy that proves to be always better than 10-15. The solution is examined with and with grid size , using the first guesses hyperbolic eccentric anomaly is and , where is the eccentricity and is the hyperbolic mean anomaly.
ISSN:2078-8665
2411-7986