Enhancing Accuracy and Explainability of Recidivism Prediction Models
Predicting recidivism is a challenging task, but it helps support courts in their decision-making process. Automated prediction models suffer from low accuracy and are associated with criticism for biased and unexplainable decision-making. In this poster, we present different machine-learning models...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
LibraryPress@UF
2023-05-01
|
| Series: | Proceedings of the International Florida Artificial Intelligence Research Society Conference |
| Online Access: | https://journals.flvc.org/FLAIRS/article/view/133382 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Predicting recidivism is a challenging task, but it helps support courts in their decision-making process. Automated prediction models suffer from low accuracy and are associated with criticism for biased and unexplainable decision-making. In this poster, we present different machine-learning models with just a few selected features that achieve accuracies as good as models that use larger sets of features. In addition, we investigate the influencing features that contribute to recidivism prediction, which can enhance the explainability of the learned models. |
|---|---|
| ISSN: | 2334-0754 2334-0762 |