The evaluation of course teaching effect based on improved RBF neural network

As basic education is increasingly digitized, the need for better teaching and learning quality also rises. Teaching reform is crucial to achieve this, and incorporating the Levenberg-Marquardt (L-M) into the Radial Basis Function (RBF) can help establish a fair online teaching evaluation system. Th...

Full description

Saved in:
Bibliographic Details
Main Authors: Hanmei Wu, Xiaoqing Cai, Man Feng
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Systems and Soft Computing
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2772941924000140
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As basic education is increasingly digitized, the need for better teaching and learning quality also rises. Teaching reform is crucial to achieve this, and incorporating the Levenberg-Marquardt (L-M) into the Radial Basis Function (RBF) can help establish a fair online teaching evaluation system. The experimental results showed that the convergence ability of the model was significantly improved compared with the traditional RBF neural network. The overall mean square error of the improved model was 10°. The actual value prediction accuracy of the improved model is higher than that of the Backpropagation (BP). When the actual value was at its peak, the accuracy reached 98 %, the overall fluctuation range of absolute error was low, the highest absolute error value reached 0.78, and the average absolute error was below 0.5. With targeted improvements, teachers and students could better understand and change their own learning situations, as reflected in empirical evaluations.
ISSN:2772-9419