An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves

We prove that maximal real algebraic curves associated with sub-Gaussian random real holomorphic sections of a smoothly curved ample line bundle are exponentially rare. This generalizes the result of Gayet and Welschinger [13] proved in the Gaussian case for positively curved real holomorphic line b...

Full description

Saved in:
Bibliographic Details
Main Authors: Bayraktar, Turgay, Karaca, Emel
Format: Article
Language:English
Published: Académie des sciences 2024-09-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.596/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206237066690560
author Bayraktar, Turgay
Karaca, Emel
author_facet Bayraktar, Turgay
Karaca, Emel
author_sort Bayraktar, Turgay
collection DOAJ
description We prove that maximal real algebraic curves associated with sub-Gaussian random real holomorphic sections of a smoothly curved ample line bundle are exponentially rare. This generalizes the result of Gayet and Welschinger [13] proved in the Gaussian case for positively curved real holomorphic line bundles.
format Article
id doaj-art-6f8213c589f34249b846c74f83c68bce
institution Kabale University
issn 1778-3569
language English
publishDate 2024-09-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-6f8213c589f34249b846c74f83c68bce2025-02-07T11:22:28ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-09-01362G777978810.5802/crmath.59610.5802/crmath.596An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal CurvesBayraktar, Turgay0Karaca, Emel1Faculty of Engineering and Natural Sciences, Sabancı University, İstanbul, 34956 TurkeyPolatlı Faculty of Science and Arts, Ankara Hacı Bayram Veli University, Ankara, 06900 TurkeyWe prove that maximal real algebraic curves associated with sub-Gaussian random real holomorphic sections of a smoothly curved ample line bundle are exponentially rare. This generalizes the result of Gayet and Welschinger [13] proved in the Gaussian case for positively curved real holomorphic line bundles.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.596/
spellingShingle Bayraktar, Turgay
Karaca, Emel
An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
Comptes Rendus. Mathématique
title An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
title_full An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
title_fullStr An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
title_full_unstemmed An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
title_short An Exponential Rarefaction Result for Sub-Gaussian Real Algebraic Maximal Curves
title_sort exponential rarefaction result for sub gaussian real algebraic maximal curves
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.596/
work_keys_str_mv AT bayraktarturgay anexponentialrarefactionresultforsubgaussianrealalgebraicmaximalcurves
AT karacaemel anexponentialrarefactionresultforsubgaussianrealalgebraicmaximalcurves
AT bayraktarturgay exponentialrarefactionresultforsubgaussianrealalgebraicmaximalcurves
AT karacaemel exponentialrarefactionresultforsubgaussianrealalgebraicmaximalcurves