Modeling crystal defects using defect informed neural networks

Abstract Most AI-for-Materials research to date has focused on ideal crystals, whereas real-world materials inevitably contain defects that play a critical role in modern functional technologies. The defects break geometric symmetry and increase interaction complexity, posing particular challenges f...

Full description

Saved in:
Bibliographic Details
Main Authors: Ziduo Yang, Xiaoqing Liu, Xiuying Zhang, Pengru Huang, Kostya S. Novoselov, Lei Shen
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-025-01728-w
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Most AI-for-Materials research to date has focused on ideal crystals, whereas real-world materials inevitably contain defects that play a critical role in modern functional technologies. The defects break geometric symmetry and increase interaction complexity, posing particular challenges for traditional ML models. Here, we introduce Defect-Informed Equivariant Graph Neural Network (DefiNet), a model specifically designed to accurately capture defect-related interactions and geometric configurations in point-defect structures. DefiNet achieves near-DFT-level structural predictions in milliseconds using a single GPU. To validate its accuracy, we perform DFT relaxations using DefiNet-predicted structures as initial configurations and measure the residual ionic steps. For most defect structures, regardless of defect complexity or system size, only 3 ionic steps are required to reach the DFT-level ground state. Finally, comparisons with scanning transmission electron microscopy (STEM) images confirm DefiNet’s scalability and extrapolation beyond point defects, positioning it as a valuable tool for defect-focused materials research.
ISSN:2057-3960