Experimental Research on Damping Effect of Double-Layer Tuned Mass Damper for High-Rise Structure
A double-layer tuned mass damper (DTMD) has advantages of wide damping frequency band and strong robustness. At present, there is a lack of seismic design methods for high-rise structures based on DTMDs. In this study, a DTMD parameter optimisation method was proposed, with the objective of minimisi...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2021-01-01
|
Series: | Shock and Vibration |
Online Access: | http://dx.doi.org/10.1155/2021/7523127 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A double-layer tuned mass damper (DTMD) has advantages of wide damping frequency band and strong robustness. At present, there is a lack of seismic design methods for high-rise structures based on DTMDs. In this study, a DTMD parameter optimisation method was proposed, with the objective of minimising the peak displacement response of a first N-order vibration modal with a vibration mass participation factor of 85%. Then, a scale model of a high-rise structure was fabricated, along with a corresponding DTMD. Different types of excitations were chosen to clarify the dynamic responses of the model with and without the DTMD, including Site-II ground motions, long-period (LP) ground motions without pulses, and near-fault pulse-type (NFPT) ground motions. The results indicate that the dynamic responses of high-rise structures under LP and NFPT ground motions are much greater than those under Site-II ground motions. The DTMD can effectively reduce the absolute displacement response, acceleration response, and strain response at the top floor of the test model. However, the DTMD has a time delay in providing the damping effect. A smaller damping ratio between the upper TMD and the controlled structure will lead to a more significant damping effect for the DTMD. |
---|---|
ISSN: | 1875-9203 |