In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux

Abstract Tumor therapeutic strategies based on mitochondrial damage have become an emerging trend. However, the low drug delivery efficiency caused by lysosomal sequestration and the activation of protective mitochondrial autophagy severely restricts the therapeutic efficacy. Herein, an in situ tran...

Full description

Saved in:
Bibliographic Details
Main Authors: Yulin Lv, Benli Song, Guang Yang, Yuting Wang, Zeyu Wu, Minggui Si, Zongzheng Yang, Huilin Chen, Chen Liu, Min Li, Yinshi Zhang, Zengying Qiao, Lu Wang, Wanhai Xu
Format: Article
Language:English
Published: Wiley 2025-02-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202409425
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832540899448455168
author Yulin Lv
Benli Song
Guang Yang
Yuting Wang
Zeyu Wu
Minggui Si
Zongzheng Yang
Huilin Chen
Chen Liu
Min Li
Yinshi Zhang
Zengying Qiao
Lu Wang
Wanhai Xu
author_facet Yulin Lv
Benli Song
Guang Yang
Yuting Wang
Zeyu Wu
Minggui Si
Zongzheng Yang
Huilin Chen
Chen Liu
Min Li
Yinshi Zhang
Zengying Qiao
Lu Wang
Wanhai Xu
author_sort Yulin Lv
collection DOAJ
description Abstract Tumor therapeutic strategies based on mitochondrial damage have become an emerging trend. However, the low drug delivery efficiency caused by lysosomal sequestration and the activation of protective mitochondrial autophagy severely restricts the therapeutic efficacy. Herein, an in situ transformable nanoparticle named KCKT is developed to promote lysosomal escape and directly damage mitochondria while blocking mitochondrial autophagy. KCKT exhibits acid responsiveness for precise self‐assembly into nanofibers within the lysosomes of cancer cells. The massive accumulation of nanofibers and excessive production of reactive oxygen species (ROS) under sonodynamic therapy synergistically induce lysosomal damage. This facilitates the escape of nanofibers from lysosomal sequestration, thereby enhancing drug delivery. Subsequently, the escaped nanofibers specifically aggregate around the mitochondria for long‐term retention and generate ROS under ultrasound irradiation to induce mitochondrial damage. Notably, due to lysosomal dysfunction, damaged mitochondria cannot be cleared by autophagy, further aggravating oxidative damage. These results reveal that KCKT effectively improves drug delivery and mitochondria‐targeted therapy efficiency by blocking protective autophagy. These findings hold significant potential for advancing the field of mitochondria‐targeted therapy.
format Article
id doaj-art-6eed0ac988d54429a459e1b673ccaba4
institution Kabale University
issn 2198-3844
language English
publishDate 2025-02-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj-art-6eed0ac988d54429a459e1b673ccaba42025-02-04T13:14:54ZengWileyAdvanced Science2198-38442025-02-01125n/an/a10.1002/advs.202409425In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy FluxYulin Lv0Benli Song1Guang Yang2Yuting Wang3Zeyu Wu4Minggui Si5Zongzheng Yang6Huilin Chen7Chen Liu8Min Li9Yinshi Zhang10Zengying Qiao11Lu Wang12Wanhai Xu13NHC Key Laboratory of Molecular Probes and Targeted Theranostics Harbin Medical University Harbin 150001 ChinaCAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 ChinaDepartment of Neurosurger The First Affiliated Hospital of Harbin Medical University Harbin 150001 ChinaNHC Key Laboratory of Molecular Probes and Targeted Theranostics Harbin Medical University Harbin 150001 ChinaNHC Key Laboratory of Molecular Probes and Targeted Theranostics Harbin Medical University Harbin 150001 ChinaNHC Key Laboratory of Molecular Probes and Targeted Theranostics Harbin Medical University Harbin 150001 ChinaNHC Key Laboratory of Molecular Probes and Targeted Theranostics Harbin Medical University Harbin 150001 ChinaNHC Key Laboratory of Molecular Probes and Targeted Theranostics Harbin Medical University Harbin 150001 ChinaNHC Key Laboratory of Molecular Probes and Targeted Theranostics Harbin Medical University Harbin 150001 ChinaNHC Key Laboratory of Molecular Probes and Targeted Theranostics Harbin Medical University Harbin 150001 ChinaNHC Key Laboratory of Molecular Probes and Targeted Theranostics Harbin Medical University Harbin 150001 ChinaCAS Center for Excellence in Nanoscience CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) No. 11 Beiyitiao Zhongguancun Beijing 100190 ChinaNHC Key Laboratory of Molecular Probes and Targeted Theranostics Harbin Medical University Harbin 150001 ChinaNHC Key Laboratory of Molecular Probes and Targeted Theranostics Harbin Medical University Harbin 150001 ChinaAbstract Tumor therapeutic strategies based on mitochondrial damage have become an emerging trend. However, the low drug delivery efficiency caused by lysosomal sequestration and the activation of protective mitochondrial autophagy severely restricts the therapeutic efficacy. Herein, an in situ transformable nanoparticle named KCKT is developed to promote lysosomal escape and directly damage mitochondria while blocking mitochondrial autophagy. KCKT exhibits acid responsiveness for precise self‐assembly into nanofibers within the lysosomes of cancer cells. The massive accumulation of nanofibers and excessive production of reactive oxygen species (ROS) under sonodynamic therapy synergistically induce lysosomal damage. This facilitates the escape of nanofibers from lysosomal sequestration, thereby enhancing drug delivery. Subsequently, the escaped nanofibers specifically aggregate around the mitochondria for long‐term retention and generate ROS under ultrasound irradiation to induce mitochondrial damage. Notably, due to lysosomal dysfunction, damaged mitochondria cannot be cleared by autophagy, further aggravating oxidative damage. These results reveal that KCKT effectively improves drug delivery and mitochondria‐targeted therapy efficiency by blocking protective autophagy. These findings hold significant potential for advancing the field of mitochondria‐targeted therapy.https://doi.org/10.1002/advs.202409425lysosomal escapemitochondria damagemitochondrial autophagyself‐assemblysonodynamic therapy
spellingShingle Yulin Lv
Benli Song
Guang Yang
Yuting Wang
Zeyu Wu
Minggui Si
Zongzheng Yang
Huilin Chen
Chen Liu
Min Li
Yinshi Zhang
Zengying Qiao
Lu Wang
Wanhai Xu
In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux
Advanced Science
lysosomal escape
mitochondria damage
mitochondrial autophagy
self‐assembly
sonodynamic therapy
title In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux
title_full In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux
title_fullStr In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux
title_full_unstemmed In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux
title_short In Situ Transformable Nanoparticle Effectively Suppresses Bladder Cancer by Damaging Mitochondria and Blocking Mitochondrial Autophagy Flux
title_sort in situ transformable nanoparticle effectively suppresses bladder cancer by damaging mitochondria and blocking mitochondrial autophagy flux
topic lysosomal escape
mitochondria damage
mitochondrial autophagy
self‐assembly
sonodynamic therapy
url https://doi.org/10.1002/advs.202409425
work_keys_str_mv AT yulinlv insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT benlisong insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT guangyang insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT yutingwang insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT zeyuwu insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT mingguisi insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT zongzhengyang insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT huilinchen insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT chenliu insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT minli insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT yinshizhang insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT zengyingqiao insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT luwang insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux
AT wanhaixu insitutransformablenanoparticleeffectivelysuppressesbladdercancerbydamagingmitochondriaandblockingmitochondrialautophagyflux