On the Vector Degree Matrix of a Connected Graph
A matrix representation of the graph is one of the tools to study the algebraic structure and properties of a graph. In this paper, by defining the vector degree matrix of graph G, we provide a new matrix representation of the graph. For some standard graphs, VD-eigenvalues, VD-spectrum, and VD-ener...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2022/8307871 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A matrix representation of the graph is one of the tools to study the algebraic structure and properties of a graph. In this paper, by defining the vector degree matrix of graph G, we provide a new matrix representation of the graph. For some standard graphs, VD-eigenvalues, VD-spectrum, and VD-energy values are defined and calculated. Moreover, we calculate the VD-matrix and calculate the VD-eigenvalues for graphs representing the chemical composition of paracetamol and tramadol. |
---|---|
ISSN: | 2314-4785 |