Human Serum Albumin and Human Serum Albumin Nanoparticles as Carriers of 10-(2′-Pyrimidyl)-3,6-diazaphenothiazine: In Vitro Spectroscopic Studies

Human serum albumin (HSA) plays a fundamental role in the human body, including the transport of exogenous and endogenous substances. HSA is also a biopolymer with a great medical and pharmaceutical potential. Due to nontoxicity and biocompatibility, this protein can be used as a nanocarrier. 10-(2′...

Full description

Saved in:
Bibliographic Details
Main Authors: Aleksandra Owczarzy, Karolina Kulig, Beata Morak-Młodawska, Małgorzata Jeleń, Tammam Muhammetoglu, Wojciech Rogóż, Małgorzata Maciążek-Jurczyk
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/30/2/315
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Human serum albumin (HSA) plays a fundamental role in the human body, including the transport of exogenous and endogenous substances. HSA is also a biopolymer with a great medical and pharmaceutical potential. Due to nontoxicity and biocompatibility, this protein can be used as a nanocarrier. 10-(2′-Pyrimidyl)-3,6-diazaphenothiazine (10-Pyr-3,6-DAPT) is a phenothiazine showing high anticancer potential in vitro against glioma, melanoma and breast cancer cells. Additionally, this compound is characterized by selectivity of action towards MCF-7 breast cancer and has low cytotoxicity towards normal cells. Considering the promising pharmacological potential of this compound and using spectroscopic techniques, HSA and human serum albumin nanoparticles (HSA-NP) were tested as carriers of this molecule. Based on the obtained data and the appropriate mathematical models (Stern-Volmer and Klotz models), it can be concluded that 10-Pyr-3,6-DAPT probably forms a weak (K<sub>a</sub> = (5.24 ± 0.57) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>×</mo></mrow></semantics></math></inline-formula> 10<sup>4</sup> and K<sub>a</sub> = (4.67 ± 0.59) <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>×</mo></mrow></semantics></math></inline-formula> 10<sup>4</sup>) for excitation wavelengths λ<sub>ex</sub> 275 nm and λ<sub>ex</sub> 295 nm, respectively) static complex (k<sub>q</sub> > 10<sup>10</sup>) with HSA (at Sudlow site II (subdomain IIIA), and the phenomenon of it having both strong therapeutic and toxic effects is possible. High encapsulation efficiency of 10-Pyr-3,6-DAPT into the HSA-NPs was obtained, and the changes in albumin secondary structure due to the presence of 10-Pyr-3,6-DAPT were registered. Based on the data presented, it can be concluded that due to the high toxic effects of 10-Pyr-3,6-DAPT, a better carrier may be HSA-NPs.
ISSN:1420-3049