Cross-Linked Chitosan as an Eco-Friendly Binder for High-Performance Wood-Based Fiberboard

High-performance wood-based fiberboards with high strength and dimensional stability were fabricated by hot-pressing method using 2,5-dimethoxy-2,5-dihydrofuran (DHF) cross-linked chitosan (CS) as an eco-friendly binder. The effects of cross-linked chitosan on the mechanical properties and dimension...

Full description

Saved in:
Bibliographic Details
Main Authors: Erzhuo Huang, Yanwei Cao, Xinpeng Duan, Yutao Yan, Zhe Wang, Chunde Jin
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:International Journal of Polymer Science
Online Access:http://dx.doi.org/10.1155/2021/8671384
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:High-performance wood-based fiberboards with high strength and dimensional stability were fabricated by hot-pressing method using 2,5-dimethoxy-2,5-dihydrofuran (DHF) cross-linked chitosan (CS) as an eco-friendly binder. The effects of cross-linked chitosan on the mechanical properties and dimensional stability of wood-based fiberboards were investigated. It is evident that cross-linked chitosan addition was effective in improving mechanical properties and dimensional stability of wood-based fiberboards. The prepared wood-based fiberboard bonded by DHF cross-linked CS displayed optimum modulus of rupture (MOR) of 42.1 MPa, modulus of elasticity (MOE) of 3986.0 MPa, internal bonding (IB) strength of 1.4 MPa, and thickness swelling (TS) value of 16.3%. The improvement of physical and mechanical properties of wood-based fiberboards could be attributed to the amide linkages and hydrogen bonds between wood fibers and cross-linked chitosan. The high-performance wood-based fiberboards fabricated in this study may be a promising candidate for eco-friendly wood-based composites.
ISSN:1687-9422
1687-9430