Global stability of an HIV-1 model with distributed intracellular delays and a combination therapy

Global stability is analyzed for a general mathematical model of HIV-1 pathogenesis proposed by Nelson and Perelson [11]. The general model include two distributed intracellular delays and a combination therapy with a reverse transcriptase inhibitor and a protease inhibitor. It is shown that the mo...

Full description

Saved in:
Bibliographic Details
Main Authors: Shengqiang Liu, Lin Wang
Format: Article
Language:English
Published: AIMS Press 2010-05-01
Series:Mathematical Biosciences and Engineering
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/mbe.2010.7.675
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global stability is analyzed for a general mathematical model of HIV-1 pathogenesis proposed by Nelson and Perelson [11]. The general model include two distributed intracellular delays and a combination therapy with a reverse transcriptase inhibitor and a protease inhibitor. It is shown that the model exhibits a threshold dynamics: if the basic reproduction number is less than or equal to one, then the HIV-1 infection is cleared from the T-cell population; whereas if the basic reproduction number is larger than one, then the HIV-1 infection persists and the viral concentration maintains at a constant level.
ISSN:1551-0018