Association between Emission Parameters and Material-phase Concentrations of Phthalate Plasticizers and their Alternatives

Abstract Plasticizers are frequently used in building materials and consumer products and many are semi-volatile organic compounds (SVOCs). Understanding the emission rate of plasticizers in indoor environments is critical for subsequent exposure and health risk assessments. While concerns have been...

Full description

Saved in:
Bibliographic Details
Main Authors: Chenyang Bi, Clara M. A. Eichler, Chunyi Wang, John C. Little
Format: Article
Language:English
Published: Springer 2023-11-01
Series:Aerosol and Air Quality Research
Subjects:
Online Access:https://doi.org/10.4209/aaqr.230163
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823862816037142528
author Chenyang Bi
Clara M. A. Eichler
Chunyi Wang
John C. Little
author_facet Chenyang Bi
Clara M. A. Eichler
Chunyi Wang
John C. Little
author_sort Chenyang Bi
collection DOAJ
description Abstract Plasticizers are frequently used in building materials and consumer products and many are semi-volatile organic compounds (SVOCs). Understanding the emission rate of plasticizers in indoor environments is critical for subsequent exposure and health risk assessments. While concerns have been increasing regarding the use of phthalate plasticizers in products and the emission of phthalates has been characterized in previous studies, the emission characteristics of compounds that are now being used as alternatives for phthalates remain poorly understood. In this work, we measured key parameters governing the emission of several phthalates and also their most recent emerging alternatives. Measurements include the gas-phase concentration in equilibrium with the material, y0, and the vapor pressure, p*, using polyvinyl chloride (PVC) sheets with relatively high, but accurately known levels of the material-phase concentration, C0, of the target plasticizers. We found that the PVC sheets containing different plasticizers show varying levels of y0 (0.05–184 µg m−3) despite having the same material-phase concentrations (C0 = 32.9% w/w). We further examined the influence of high material-phase concentrations on y0 and found that the measured concentrations of y0 of diisononyl phthalate (DINP) (i.e., 0.12, 0.13, and 0.13 µg m−3) for three PVC sheets were almost the same despite having different material-phase levels (i.e., 39%, 33%, and 26% w/w, respectively). The deviation from the previously reported linear relationship between y0 and C0 can be attributed to the assumption that the material with plasticizers is a ‘dilute solution’ at high material-phase concentrations, which likely becomes invalid at these high levels. Preliminary results also show that the plasticizers are ideally mixed in the polymer and that their simultaneous presence does not affect the y0 of individual compounds, even at relatively high material-phase concentrations.
format Article
id doaj-art-6e0956e8354b43ecb474bdc0c3712810
institution Kabale University
issn 1680-8584
2071-1409
language English
publishDate 2023-11-01
publisher Springer
record_format Article
series Aerosol and Air Quality Research
spelling doaj-art-6e0956e8354b43ecb474bdc0c37128102025-02-09T12:24:09ZengSpringerAerosol and Air Quality Research1680-85842071-14092023-11-012411910.4209/aaqr.230163Association between Emission Parameters and Material-phase Concentrations of Phthalate Plasticizers and their AlternativesChenyang Bi0Clara M. A. Eichler1Chunyi Wang2John C. Little3Department of Civil and Environmental Engineering, Virginia TechDepartment of Civil and Environmental Engineering, Virginia TechDepartment of Civil and Environmental Engineering, Virginia TechDepartment of Civil and Environmental Engineering, Virginia TechAbstract Plasticizers are frequently used in building materials and consumer products and many are semi-volatile organic compounds (SVOCs). Understanding the emission rate of plasticizers in indoor environments is critical for subsequent exposure and health risk assessments. While concerns have been increasing regarding the use of phthalate plasticizers in products and the emission of phthalates has been characterized in previous studies, the emission characteristics of compounds that are now being used as alternatives for phthalates remain poorly understood. In this work, we measured key parameters governing the emission of several phthalates and also their most recent emerging alternatives. Measurements include the gas-phase concentration in equilibrium with the material, y0, and the vapor pressure, p*, using polyvinyl chloride (PVC) sheets with relatively high, but accurately known levels of the material-phase concentration, C0, of the target plasticizers. We found that the PVC sheets containing different plasticizers show varying levels of y0 (0.05–184 µg m−3) despite having the same material-phase concentrations (C0 = 32.9% w/w). We further examined the influence of high material-phase concentrations on y0 and found that the measured concentrations of y0 of diisononyl phthalate (DINP) (i.e., 0.12, 0.13, and 0.13 µg m−3) for three PVC sheets were almost the same despite having different material-phase levels (i.e., 39%, 33%, and 26% w/w, respectively). The deviation from the previously reported linear relationship between y0 and C0 can be attributed to the assumption that the material with plasticizers is a ‘dilute solution’ at high material-phase concentrations, which likely becomes invalid at these high levels. Preliminary results also show that the plasticizers are ideally mixed in the polymer and that their simultaneous presence does not affect the y0 of individual compounds, even at relatively high material-phase concentrations.https://doi.org/10.4209/aaqr.230163SVOCsEmissionPVCPhthalate alternatives
spellingShingle Chenyang Bi
Clara M. A. Eichler
Chunyi Wang
John C. Little
Association between Emission Parameters and Material-phase Concentrations of Phthalate Plasticizers and their Alternatives
Aerosol and Air Quality Research
SVOCs
Emission
PVC
Phthalate alternatives
title Association between Emission Parameters and Material-phase Concentrations of Phthalate Plasticizers and their Alternatives
title_full Association between Emission Parameters and Material-phase Concentrations of Phthalate Plasticizers and their Alternatives
title_fullStr Association between Emission Parameters and Material-phase Concentrations of Phthalate Plasticizers and their Alternatives
title_full_unstemmed Association between Emission Parameters and Material-phase Concentrations of Phthalate Plasticizers and their Alternatives
title_short Association between Emission Parameters and Material-phase Concentrations of Phthalate Plasticizers and their Alternatives
title_sort association between emission parameters and material phase concentrations of phthalate plasticizers and their alternatives
topic SVOCs
Emission
PVC
Phthalate alternatives
url https://doi.org/10.4209/aaqr.230163
work_keys_str_mv AT chenyangbi associationbetweenemissionparametersandmaterialphaseconcentrationsofphthalateplasticizersandtheiralternatives
AT claramaeichler associationbetweenemissionparametersandmaterialphaseconcentrationsofphthalateplasticizersandtheiralternatives
AT chunyiwang associationbetweenemissionparametersandmaterialphaseconcentrationsofphthalateplasticizersandtheiralternatives
AT johnclittle associationbetweenemissionparametersandmaterialphaseconcentrationsofphthalateplasticizersandtheiralternatives