Regularizing Effects for a Singular Elliptic Problem

In this paper, we prove existence and regularity results for a nonlinear elliptic problem of p-Laplacian type with a singular potential like <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="...

Full description

Saved in:
Bibliographic Details
Main Authors: Ida de Bonis, Maria Michaela Porzio
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/14/1/47
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832589121423409152
author Ida de Bonis
Maria Michaela Porzio
author_facet Ida de Bonis
Maria Michaela Porzio
author_sort Ida de Bonis
collection DOAJ
description In this paper, we prove existence and regularity results for a nonlinear elliptic problem of p-Laplacian type with a singular potential like <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><mi>f</mi><msup><mi>u</mi><mi>γ</mi></msup></mfrac></mstyle></semantics></math></inline-formula> and a lower order term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mi>u</mi></mrow></semantics></math></inline-formula>, where <i>u</i> is the solution and <i>b</i> and <i>f</i> are only assumed to be summable functions. We show that, despite the lack of regularity of the data, for suitable choices of the function <i>b</i> in the lower order term, a strong regularizing effect appears. In particular we exhibit the existence of bounded solutions. Worth notice is that this result fails if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>≡</mo><mn>0</mn></mrow></semantics></math></inline-formula>, i.e., in absence of the lower order term. Moreover, we show that, if the singularity is “not too large” (i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>), such a regular solution is also unique.
format Article
id doaj-art-6e033575ed6942f4946e431ea66f31a3
institution Kabale University
issn 2075-1680
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-6e033575ed6942f4946e431ea66f31a32025-01-24T13:22:15ZengMDPI AGAxioms2075-16802025-01-011414710.3390/axioms14010047Regularizing Effects for a Singular Elliptic ProblemIda de Bonis0Maria Michaela Porzio1Dipartimento di Pianificazione, Design, Tecnologia dell’Architettura, Sapienza Università di Roma, Via Flaminia 70, 00196 Roma, ItalyDipartimento di Pianificazione, Design, Tecnologia dell’Architettura, Sapienza Università di Roma, Via Flaminia 70, 00196 Roma, ItalyIn this paper, we prove existence and regularity results for a nonlinear elliptic problem of p-Laplacian type with a singular potential like <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mstyle scriptlevel="0" displaystyle="true"><mfrac><mi>f</mi><msup><mi>u</mi><mi>γ</mi></msup></mfrac></mstyle></semantics></math></inline-formula> and a lower order term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mi>u</mi></mrow></semantics></math></inline-formula>, where <i>u</i> is the solution and <i>b</i> and <i>f</i> are only assumed to be summable functions. We show that, despite the lack of regularity of the data, for suitable choices of the function <i>b</i> in the lower order term, a strong regularizing effect appears. In particular we exhibit the existence of bounded solutions. Worth notice is that this result fails if <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>b</mi><mo>≡</mo><mn>0</mn></mrow></semantics></math></inline-formula>, i.e., in absence of the lower order term. Moreover, we show that, if the singularity is “not too large” (i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>γ</mi><mo>≤</mo><mn>1</mn></mrow></semantics></math></inline-formula>), such a regular solution is also unique.https://www.mdpi.com/2075-1680/14/1/47nonlinear elliptic equationssingular lower order termsirregular data
spellingShingle Ida de Bonis
Maria Michaela Porzio
Regularizing Effects for a Singular Elliptic Problem
Axioms
nonlinear elliptic equations
singular lower order terms
irregular data
title Regularizing Effects for a Singular Elliptic Problem
title_full Regularizing Effects for a Singular Elliptic Problem
title_fullStr Regularizing Effects for a Singular Elliptic Problem
title_full_unstemmed Regularizing Effects for a Singular Elliptic Problem
title_short Regularizing Effects for a Singular Elliptic Problem
title_sort regularizing effects for a singular elliptic problem
topic nonlinear elliptic equations
singular lower order terms
irregular data
url https://www.mdpi.com/2075-1680/14/1/47
work_keys_str_mv AT idadebonis regularizingeffectsforasingularellipticproblem
AT mariamichaelaporzio regularizingeffectsforasingularellipticproblem