A Virtual Synchronous Generator Low-Voltage Ride-Through Control Strategy Considering Complex Grid Faults

The Virtual Synchronous Generator (VSG) control strategy has garnered widespread application during the low-voltage ride-through (LVRT) of distributed energy resources integrated into power grids, primarily due to its inertia and damping properties. However, grid voltage dips frequently coincide wit...

Full description

Saved in:
Bibliographic Details
Main Authors: Jun Yin, Ziang Chen, Weichen Qian, Shengyu Zhou
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/4/1920
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Virtual Synchronous Generator (VSG) control strategy has garnered widespread application during the low-voltage ride-through (LVRT) of distributed energy resources integrated into power grids, primarily due to its inertia and damping properties. However, grid voltage dips frequently coincide with unbalanced conditions and harmonic disturbances, against which traditional VSG LVRT control strategies offer limited resilience, resulting in unbalanced and unstable grid-connected currents. Consequently, this impacts the VSG’s support for voltage at the point of common coupling (PCC) during LVRT, potentially leading to control system failure. To tackle this challenge, this paper introduces a VSG LVRT control strategy tailored for complex grid faults. Initially, a mathematical model is developed to analyze the impact on the VSG control system’s grid-connected current when the PCC voltage of the LC filter experiences harmonic-laden unbalanced dips. Subsequently, the traditional dual second-order generalized integrator phase-locked loop (DSOGI-PLL) is enhanced to bolster its filtering capabilities. Additionally, PCC voltage feedforward control is incorporated, with a meticulously derived feedforward function to counteract the disturbances caused by unbalanced grid voltage dips, thereby enhancing the VSG system’s anti-interference ability and stabilizing the grid-connected current. This enables effective VSG LVRT control in the face of complex grid faults and ensures successful LVRT of the grid-connected system. Ultimately, the efficacy of the proposed control strategy is confirmed through PSCAD simulations.
ISSN:2076-3417